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Procurement auctions are sometimes plagued with a chosen supplier’s failing to accomplish a project suc-
cessfully. The risk of project failure is considerable, especially when the buyer has inadequate information
about suppliers ex ante and the project can only be evaluated at the end. To manage such uncertainty, a model
of competitive procurement and contracting for a project is presented in this paper. We study a setting in which
suppliers differ in both the costs to fulfill the project and the types reflecting their success probabilities. To
screen suppliers, the buyer invites suppliers to specify a two-dimensional bid composed of the proposed cost
and a penalty payment if the delivered project fails to meet the requirements. We find that a quasi-linear scoring
rule can effectively separate suppliers regarding their types. We then study the efficient and optimal design of
the scoring rule. The efficient design internalizes the inferred information on suppliers’ type and essentially
ranks suppliers based on the expected total cost to the buyer. In the optimal design, the buyer may or may not
under-reward suppliers” high success probability, depending on the balance between suppliers’ success proba-
bilities and the associated cost distributions. Interestingly, it is always optimal for the buyer to possibly award
the project to suppliers with low success probability to promote the competition, even when the difference in
suppliers’ success probabilities is huge. We show that, compared to standard auctions, the procurement auctions

with contingent contracts can significantly improve both social welfare and the buyer’s payoff.
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1. Introduction
Procurement auctions play an important role in elic-
iting suitable suppliers or contractors for various
projects (Beall et al. 2003). In procurement auctions,
buyers often spend most of their effort in finding the
best contract with the lowest price. However, another
critical issue—the ability of a potential supplier to ful-
fill the project and the associated uncertainty, which
are typically unobservable and thus noncontractible—
should never be neglected, because it would other-
wise lead to disastrous outcomes. In this paper, we
propose procurement auctions with contingent con-
tracts and study the design of such auctions to handle
this critical issue.

In 1993, the Oregon Department of Motor Vehi-
cles (DMV) launched an information technology (IT)
project aiming to computerize its manual and paper-
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based daily work. Only two years after its initiation,
this initially five-year and $50 million project was
shifted to an estimation of completion in eight years
with the cost of $123 million. In 1996, a prototype of
the new system was tested. In less than half a week,
the DMV office had its longest waiting line and most
complaints ever. The usability of the system was so
bad that the system was considered a total failure.
Eventually, state officials had no choice but to kill the
project completely. Ironically, the IT project that was
supposed to downsize the workforce, after tens of mil-
lions of dollars of waste, succeeded in nothing but
downsizing the DMV officials who witnessed the dis-
aster (Martin 2002).

Large projects (e.g., large-scale IT implementation
and military weapon programs) have a certain possi-
bility of failure, partially because of their complexity.
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More importantly, the success of a procurement
project critically depends on the contractor’s project
management and quality control capabilities. Without
considering the uncertainty of the outcome and hence
the possibility of failure, it is impractical for buy-
ers to eliminate the risk by simply specifying all the
required outcomes in the contract. Once the project
fails, the loss incurred to the buyer is inevitable, and
most times it is unbearable. Although buyers could
resort to the court for enforced compensation once
contractors fail to fulfill the prespecified requirement,
the huge operational cost associated with legal pro-
cedures and even the possibility of bankruptcy of
the contractors make the feasibility and effectiveness
of this approach quite limited. Alternatively, buyers
may rely on renegotiation to control the loss ex post.
Nevertheless, as the contractor typically has more
information than the buyer regarding the status of
the project and the operations being followed, the
buyer is often in a disadvantaged position in the
renegotiation. Depending on the negotiation power,
some projects can take longer than they should and
cause enormous cost overrun problems. According to
a report from a U.S. Congressional auditing agency in
2008, nearly 70% of the Pentagon’s 96 largest weapons
programs suffered from huge cost overruns, for a
combined total of $296 billion more than the original
estimates (Drew 2009). In many other cases, renegoti-
ation may not even be possible.

To better manage the risk associated with a project,
the buyers should take into account the difference
among potential suppliers’ ability to successfully
accomplish the project in the first place, in addition
to the cost that the suppliers request. The potential
success rate can vary greatly across different con-
tractors, depending on contractors’ experience and
expertise. On the one hand, the buyer could try to
verify each potential contractor’s qualification and to
assess their expected performance, but such verifi-
cation and assessment typically involve case-by-case
investigation and perhaps on-site involvement, and
are thus very costly (Wan and Beil 2009). In some
other cases, auctioneers may be able to infer poten-
tial contractors’ capability by their past performance
information (Rothkopf and Whinston 2007), such as
the typical approach search engines adopt in online
keyword advertising auctions. However, in general,

such information can be difficult or even impossible
to collect (e.g., past project history may not be avail-
able in sensitive industries like weapons manufac-
turing). On the other hand, potential suppliers have
better knowledge of their own experience, expertise,
and capability of managing the project, and thus are
able to form a more precise estimation of the suc-
cess rate. It could be most efficient to induce bid-
ders to self-reveal private information on their success
probabilities in procurement auctions. In this sense, it
seems extremely appealing to devise a novel mecha-
nism to screen potential contractors so that the most
suitable contractor can distinguish itself and win the
project as a result. Fortunately, as we show in this
paper, by introducing contingent payments into pro-
curement auctions, we are able to achieve this goal.

We study a procurement setting in which both price
and nonprice attributes matter. In particular, suppliers
differ in both their costs to fulfill the project and their
types in terms of the probabilities of their successfully
accomplishing the project. Suppliers may have a low
or high success probability. Different from price-only
auctions or typical scoring auctions, suppliers’ types
are noncontractible, and thus cannot be incorporated
in a scoring function. We propose a contingent con-
tract in determining the winner. Suppliers place bids
on fulfillment cost and a penalty payment if they fail
to meet the project requirement at the end. The buyers
use a scoring rule to determine the winner. We then
study the suppliers” equilibrium bidding, investigate
the efficient and optimal design of such auctions, and
compare the proposed auction approach with stan-
dard procurement auctions.

We find that attaching contingency terms with a
scoring rule has a significant impact on suppliers’
equilibrium bidding. First, a quasi-linear scoring rule
can effectively separate suppliers regarding their suc-
cess probabilities. Suppliers” equilibrium bids on the
penalty signal their confidence and reveal their types.
Second, suppliers’ bids on cost take into account the
possible penalty in case of failure and are, not sur-
prisingly, higher than in standard auctions. Further-
more, different scoring rules influence how suppliers
with different success probabilities compete with each
other in equilibrium and affect the allocation of the
project.
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Despite the complexity of equilibrium bidding strat-
egies of the bidders, the efficient design is remarkably
simple: It internalizes the inferred information on sup-
pliers” types and essentially ranks suppliers based
on the expected total cost to the buyer. Relative to
the efficient design, the optimal design may or may
not under-reward suppliers’ high success probabili-
ties, depending on the balance between success prob-
ability and cost distribution. Interestingly, to promote
the competition between different types of suppliers,
the optimal design always ensures that some suppli-
ers with low success probability can win over some
of those with high success probability, regardless of
the difference of their success probabilities. We show
that, compared to standard auctions, the procurement
auctions with contingent contracts can significantly
improve both social welfare and the buyer’s payoff.

The rest of this paper is organized as follows. In §2,
we discuss the related literature. We set forth our
model in §3. In §4 we explore suppliers’ equilibrium
bidding behaviors. We examine the design of efficient
scoring rules and optimal scoring rules in §5 and §6,
respectively. Section 7 discusses some extensions, and
§8 concludes this paper.

2. Literature Review
Two streams of literature are related to this work. The
first stream is the study of scoring rules and scor-
ing auctions. Scoring rules have long been discussed
in decision science literature (Kilgour and Gerchak
2004, Johnstone 2007, Bickel 2007, Abbas 2009). Good
(1952) was among the first who interpreted scor-
ing rules as incentive devices to induce agents’ true
belief for assessing a project. Since then, many scoring
rules, such as quadratic, spherical, logarithmic, and
the parimutuel Kelly scoring rules (Johnstone 2007),
have been introduced and investigated for different
purposes, such as predicting the probability of an
event. Bickel (2007) compares different scoring rules
and offers some guidance as to which rule is the most
appropriate for which purpose. Unlike the settings
studied in the above literature, our paper focuses on
procurement auctions using a scoring rule to deter-
mine a winner.

This research is closely related to previous stud-
ies on “scoring auctions,” or auctions in which bid-
ders place multidimensional bids and are ranked by

scores calculated from their bids (Che 1993, Bushnell
and Oren 1994, Asker and Cantillon 2008). For exam-
ple, Che (1993) studies a form of scoring auction used
in government procurement, where suppliers bid on
both price and quality, and bids are evaluated by
a scoring rule. The critical difference of our study
from theirs lies in the contingency terms in the auc-
tion rule and, fundamentally, the supplier-dependent
success rate, which itself cannot be used for scoring
rules. In particular, in their setting, bids (on price and
nonprice attributes) fully determine the buyer’s pay-
off, whereas in our setting, in addition to their bids,
suppliers’ success probabilities play an important role
in the buyer’s payoff.

Scoring rules also appear to be an important com-
ponent in other auction settings. Bushnell and Oren
(1995) consider auctions to select an internal sup-
plier for intermediate products, in which suppliers
bid on a fixed cost plus a unit price and the winner
is determined by scores calculated from their two-
dimensional bids. Liu et al. (2009) study the scoring
rule under keyword auctions. They consider contin-
gent payment in auction design under the assumption
that the auctioneer can observe the nonprice infor-
mation, and winner determination is based on both
the observed information and the bid. In our case,
we assume both the price and nonprice information
is private information, and winner determination is
according to suppliers’ bids on both cost and penalty.
In a sense, Liu et al. (2009) take a learning approach,
and here we take an economic screening approach.

The second stream of work related to ours is the
study of auctioning contingent contracts. Ewerhart
and Fieseler (2003) study unit-price-contract auctions
in a procurement setting, in which bidders bid unit
prices for labor and materials, and the final payment
depends on the realized amount of input used. The
buyer specifies an estimated amount of each input
to evaluate suppliers’ bids (using a weighted sum
of unit-price bids by the specified amounts), and the
bidder with the lowest estimated cost wins. McAfee
and McMillan (1986) consider a contractor’s moral
hazard problem of cost control in procurement auc-
tions and characterize the optimal linear contract. The
auction model in this paper differs from the above
in the application setting and contract formats, and
thus differs in bid structure and equilibrium bidding
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behavior. In addition, unlike the equilibrium bidding
being determined by a single parameter in the above
auctions, equilibrium bidding in our paper is deter-
mined both by suppliers’ costs and by their success
probabilities.

3. Model

We consider a risk-neutral buyer seeking to award an
indivisible project to a supplier. There is risk associ-
ated with the project such that a chosen supplier may
not be able to complete the project successfully or
meet essential requirements. Examples of such risks
include a chosen supplier who cannot deliver the
project on time, or the project delivered does not meet
the prespecified quality. Therefore, the buyer cares
about both the price that a supplier asks and the sup-
plier’s type, which reflects its suitability to or prepa-
ration for the project. We focus on the setting where
the outcome of the project is verifiable so that it is
possible to write a contingent contract on the out-
come. The buyer hence introduces a contingent con-
tract into the procurement auctions to screen potential
suppliers. In particular, the buyer requires bidders to
propose a contingent payment when the project fails,
in addition to their bids on the cost of completing the
project.

There are 1 (>2) potential suppliers available in the
candidate pool. We assume that suppliers differ in
two dimensions: One dimension is the expected cost
of completing the project, c;. Suppliers may differ in
their fulfillment costs because they may use differ-
ent technologies, human capitals, or procedures. The
other dimension is the type of supplier, reflecting the
probability of its successfully completing the project.
We focus on the case where the probability of success-
ful completion for bidder i, 1 —g;, is an inherent char-
acteristic of the bidder; that is, g, measures supplier i’s
probability of failing, which characterizes supplier i’s
type—its suitability, preparation, or qualification for
the project. Throughout this paper, we use the term
“type” to refer exclusively to suppliers’ probability of
success (rather than both dimensions). Suppliers may
be different in the probability of failure because they
may have different levels of expertise, experience, and
capability of project management and quality control.
In the extension, we discuss the case where suppliers’

types are characterized by distributions of the degree
to which they meet the buyer’s requirement.

Suppliers privately observe their own cost and
type, but not those of the other suppliers. The buyer
observes neither suppliers’ costs nor their types, so
auctions are naturally adopted to choose a contractor.
However, the distribution of suppliers’ costs and types
is common knowledge. Cost ¢ and probability mea-
sure g are jointly drawn from [¢, ¢] x [0, 1], following
a joint probability density function f(c, g). We assume
that, for any given g¢;, the density function f(c, g;) is
positive and continuous on the interval [c, c].

The buyer invites potential suppliers to bid on
(b;, t;), where b; is the cost of fulfilling the project and
t; is the penalty that a supplier is willing to bear if the
project delivered fails to meet the essential require-
ments. We assume suppliers are risk neutral so their
payoff functions can be formulated as

U, t; c,q)=(b—c—qt)Pr(win). @)

The buyer derives value v if the delivered project
succeeds in meeting all the requirements. Otherwise,
the value is discounted—we assume that the buyer
bears loss z from v. Therefore, if supplier i who pro-
poses (b;, t;) wins the contract, the expected payoff for
the buyer is

V(b;, t;,q)=0v—b—(z—t,)g;.

One important feature of the buyer’s payoff differen-
tiates our setting from those of others (e.g., Che 1993,
Asker and Cantillon 2008): In our case the buyer not
only cares about a supplier’s bid (the same as in other
settings), but is also concerned about the supplier’s
true type, reflecting its probability of success (which
itself, as a probability measure, is unobservable and
noncontractible, and thus cannot be made part of an
agreement).

The project is assigned according to some scoring
rule S(b, t) preannounced by the buyer. The scoring
function is increasing in b and decreasing in t. The
supplier with the lowest score wins the project. In
particular, we consider a quasi-linear scoring func-
tion in the form of S(b,t) =b — A(t), where A(t) is
increasing and concave (i.e., A’(t) >0 and A”(t) <0).
In other words, we consider a class of scoring rule in
which bids on price and bids on penalty are separable
and additive. This class of scoring rule encompasses
many commonly used scoring rules. For example,
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A(t) = w~/t represents the simplest square-root scor-
ing rule, and A(t) = wIn(1 + ¢t) represents a logarith-
mic scoring rule.

Next, we start with a simple case of two possible
types: g, and g, 0 < g, < g, < 1. We call the sup-
pliers with g; the preferred suppliers and the suppli-
ers with g, the nonpreferred suppliers, because the
former has a lower failure probability and, every-
thing else being equal, is more desirable to the buyer.
We will extend our model to a multiple-type case
in §7. We assume that the probabilities for an individ-
ual supplier’s being preferred and being nonpreferred
are @ and 1— «, respectively. To simplify the nota-
tion, we let f,(c) = f(c, q;) and f,(c) = f(c, q5), which
have a fixed and common support [¢, ¢]. Correspond-
ingly, we define the cumulative distribution functions
E(c)= [ fi(x)dx and E,(c) = [  f,(x) dx. The common
support assumption is to simplify notation. The anal-
ysis and results can be easily generalized to the cases
with different supports [¢;, ¢;] and [¢;,, ¢;] for the pre-
ferred and the nonpreferred suppliers, respectively.

To avoid distraction from trivial equilibrium out-
comes, throughout this paper, we focus our discus-
sion on the case in which the difference in suppliers’
success probabilities is not too huge so that in equi-
librium at least some low-cost nonpreferred suppliers
can win over some high-cost preferred suppliers. In
other words, we focus our discussion on the scoring
rules that satisfy

[AA N (g)) — A ()]
—[ANT @) - N T @) <E—c. ()

The explanation of this condition shall become clear
after Proposition 1. When condition (2) is not satisfied,
the equilibrium outcome reduces to a simple case in
which suppliers only compete with peers of the same
type, and similar analysis remains to apply.

4. Equilibrium Analysis
We first consider suppliers’ bidding strategies.
Throughout this paper, we consider a symmetric,
pure-strategy Bayesian-Nash equilibrium. By “sym-
metric” we mean that suppliers with the same cost
and type will bid the same.

Let 7 =b — c — tq, which is the expected profit a
supplier earns upon winning the auction. Given any

such supposed profit level, the supplier intends to
maximize the winning probability or, equivalently, to
minimize its score by properly choosing the bid on
penalty t:

mtinS(T—i-c—i-qt,t)=T+c+qt—A(t). 3

Because of the concavity of A(-), the first-order con-
dition characterizes the optimal bid on the penalty:
g = A'(t*). For example, for the class of logarithmic
scoring rule with A(t) = win(1+1), it is easy to derive
t* =1/q — 1; for the class of square-root scoring rule

with A(f) = wvt,
2

=Y
= yreg 4)
We denote the optimal bid on penalty as
E(g) = A7), 5)

LemMma 1. Under the scoring rule S(b,t), in equilib-
rium the suppliers bid t*(q) on the penalty part as defined
by Equation (5). Moreover, t*(q) is decreasing in .

ProOF. Because A”(t) <0, A'"!(g) is well defined
and decreasing in g. Therefore, t*(q) is decreasing
ing. O

The above lemma indicates that in equilibrium
bidders with lower failure probability bid more on
penalty. In this sense, the quasi-linear scoring function
can effectively screen bidders in terms of their private
types: The more suitable or better prepared suppliers
bid more aggressively on penalty.

We next examine suppliers’ bidding strategies on
the cost. Based on the above lemma, we now rewrite
the suppliers’ payoff function Equation (1) as

U, t*(qu); ¢, q,) = (b — ¢ — q,t*(g)) Pr(win),
uew,t(q); c, q) = (b —c —gt*(g,)) Pr(win).

We denote b,(c) and b,(c) as the equilibrium bids
on the fulfilling cost for suppliers with g, and g,
respectively. We conjecture and will verify that both
bidding functions are increasing in supplier’s cost c,
and there exists c* € [c, ¢] such that S(b,(¢), t*(g,)) =
S(,(c*), t*(9,)).- The conjecture on c¢* is intuitive
because, in general, suppliers with a lower failure rate
have a greater chance to win the contract, and a pre-
ferred supplier with the highest possible cost may
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Figure 1 Comparable Bidders
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have the same winning probability as some nonpre-
ferred supplier with a lower cost. Under this con-
jecture, for any nonpreferred supplier with cost ¢
below c*, there must be a preferred supplier with
cost m(c) who matches the former’s score, where
m: [c,c] — [c,C] is a mapping from a nonpreferred
supplier to its counterpart in the preferred group. We
call this pair of suppliers comparable bidders. Figure 1
illustrates a pair of comparable bidders by a dashed
line, with a nonpreferred supplier of cost ¢ at one
end and a preferred supplier of cost m(c) at the other.
Technically, we simply define m(c) =¢ for ¢ > c*, and
m~Y(c) = ¢ for ¢ < m(c). Based on such notations,
we can formulate the suppliers’ equilibrium winning
probabilities:

pi(0) = [l = () + (1 — &) (1 = B,(m " ())]",
pi(0) = [a(1 = B(m(c))) + (1 — a)(1 = F,(c)]" -

A nonpreferred supplier with cost ¢ can beat a compe-
titor only if the competitor is a nonpreferred supplier
with a higher cost, or if the competitor is a preferred
supplier but with a cost higher than m(c). The non-
preferred supplier can win the contract only if it beats
all the remaining n — 1 competitors, which explains
py,(c). The winning probability for the preferred sup-
pliers p;(c) is derived along a similar line.

ProrosITION 1. Under the scoring rule S(b,t), in
equilibrium, suppliers place bids on penalty as in Lemma 1
and place bids on cost as follows.

() = ¢+ gut*(qy) + L2
Ph(c) (7)
¢ d ¢ d
() = c+ gt (g + =P ;(*C)f pulx) dx,

where m(c) =c+ A, c*=Cc— A, and A is defined by

A=[A (@) —at (@)] = [AE @) — aut"@)]- ©®)

Proor. All proofs of propositions are deferred to
the appendix. O

We can easily verify that the above bidding func-
tions are indeed monotonically increasing in cost ¢ by
checking the first-order derivative. As in the standard
auctions, in equilibrium suppliers ask more than their
true cost.

Two features of the bidding functions differ from
that in the standard auctions. First, in the bid on cost,
we have an extra term of gt*(g), which is exactly
the expected penalty. Once suppliers promise to bear
the penalty if they fail to meet the requirement, they
take such possible revenue loss into account in for-
mulating their bidding. So the buyer is not better off
from the suppliers’ promised penalty itself. Instead,
the equilibrium penalty serves like a screening device
that separates their suppliers with different types. Sec-
ond, in the preferred suppliers’ bidding function, we
observe one extra term in the fraction f: pu(x)dx,
compared to that of a standard auction. We call it
the base payoff for preferred suppliers. Unlike in the
standard auctions, in equilibrium, the preferred sup-
plier with even the highest possible cost ¢ can still
earn a certain level of payoff, because it has a lower
failure rate and is more desirable, from the buyer’s
perspective, than some nonpreferred suppliers with
lower cost.

The revealed matching pattern m(c) = c + A indi-
cates that a nonpreferred supplier with cost ¢ and a
preferred supplier with cost c+ A are comparable (i.e.,
they have the same winning probability). Intuitively,
because (b — qt) represents a supplier’s expected rev-
enue from the buyer, A defined in Equation (8) can
be interpreted as the difference between a preferred
supplier’s expected revenue and a nonpreferred sup-
plier’s expected revenue when they both bid the same
score s (because A = [s + A(t*(q)) — q:it*(q)] — [s +
A(t*(q,)) — 9,t*(g,)])- A preferred supplier of cost ¢ + A
and a nonpreferred supplier of cost ¢ thus have the
same expected profit (i.e., expected revenue less ful-
fillment cost) upon winning, if they bid the same
score. Therefore, the two suppliers face the same
trade-off between the expected profit upon winning
and probability of winning, which leads to the same
choice of score in equilibrium. Technically, when a
nonpreferred supplier with cost ¢ bids score s’ (i.e.,
bid s’ + A(t*(g,)) on cost) and a preferred supplier
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with cost ¢+ A bids score s” (i.e., bid s” + A(t*(g;)) on Figure 2 Example of Equilibrium Bidding Strategies
cost), we can rewrite their payoffs as b |[= = Nomprefomed sumpliers
, N N Preferred suppliers
U(s + A (@), £ @0; ¢, a) 20 ///
= (5" + A(*(q,)) — ¢ — qut*(q4)) !
-Pr(s’ is the lowest score), L5 1
U(s"+ At (q)), t(a@); c+A, ) -7
1.0 e
= (s"+A(t*(q) —c— A—qit*(q) " ‘
-Pr(s” is the lowest score) s+~ - ! |
= (s"+ At (q,) — ¢ — @ut*(q)) | |
-Pr(s” is the lowest score), 0.0 ' — ' ' '
0.0 02 0.4 0.6 0.8 1.0

where the last equality is achieved by substituting A
defined in Equation (8). Evidently, those two suppli-
ers face exactly the same optimization problem when
choosing the optimal score. That is, if s* is the best
choice for the preferred supplier with ¢ + A, s* must
be the best choice for the nonpreferred supplier with
cost ¢ as well. Therefore, the nonpreferred supplier
with cost ¢ has the same winning probability as the
preferred supplier with cost ¢ + A; or those two are
comparable in equilibrium.

Notice that the term on the left-hand side of Equa-
tion (2) is simply the definition of A in Equation (8).
So condition (2) is to ensure that A < ¢ — ¢. When
the condition is not satisfied (i.e., A > ¢ — ¢), in equi-
librium, the preferred suppliers adjust their bids so
that the preferred supplier with the highest cost ¢ ties
in score with the nonpreferred one with the lowest
cost c. This is because, for the preferred supplier with
the highest cost, bidding the same score as the non-
preferred one with the lowest cost is the most prof-
itable way to win over all realized nonpreferred sup-
pliers. As a result, none of the nonpreferred suppliers
can win over any preferred supplier. More explicitly,
b,(c) takes the same form as in Equation (7), and!

bi(c)=c+qt*(q,)

+ffp,(x>dx+f§ph<ac>dx+<A—5+g>p,(a>
pi(c)

, )

'b,(c) and b)(c) are derived in a manner similar to that for Propo-
sition 1 except that U(b,(C), t*(q,); ¢, q;) is determined by b,(c) —
A(t*(q) = by(c) — A(t*(q,)) instead.

where p(c) = [a(1 - F(c)) + (1 — a)]"™" and p(c) =
[(1-a)-(1-F,)]"".

The following example illustrates suppliers’ equi-
librium bidding.

ExamPLE 1. We consider a setting in which a =
1/2, g, =1/4, g, = 3/4, and n = 3. We assume the
costs of the preferred and the nonpreferred suppli-
ers are distributed over [0, 1], with the cumulative
distribution functions F(x) = x? and F,(x) = x, respec-
tively. We use the square-root scoring rule with w =1
(ie., A(t) =+/t) as an example. According to Equa-
tion (4), equilibrium bids on penalty are *(g;) =4 and
t*(g,) =4/9. Clearly, the preferred suppliers bid more
than the nonpreferred suppliers on penalty. Accord-
ing to Equation (8), we can calculate A =2/3, and thus
v*=1/3 and m(c) = c+2/3. We plot suppliers’ equi-
librium bids on cost as in Figure 2.

It is worth highlighting the kink in each bidding
function. In Figure 2, we observe a kink at 2/3 in the
preferred suppliers’ bidding function and a kink at 1/3
in the nonpreferred suppliers’ bidding function. Intu-
itively, the presence of such a kink is because of the
change in competition suppliers face. For example,
preferred suppliers with low cost have no compara-
ble nonpreferred suppliers, and thus the competition
is mainly within the preferred group. Once preferred
suppliers’ cost reaches a certain level (¢ = 2/3 in
the above example), they face the competition from
the comparable nonpreferred suppliers, in addition to
their own peers, which changes the competition they
face and results in the kink in their bidding function.
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A similar explanation applies to the kink in the non-
preferred suppliers’ bidding function.

5. Efficiency and Scoring Rule

In this section, we examine the efficiency of differ-
ent scoring rules. We measure the efficiency by the
total value created. The efficiency criterion, therefore,
emphasizes the “total pie,” which is especially impor-
tant for procurement in the public sector (i.e., govern-
ment procurement).

Because of the monotonicity in the equilibrium bid-
ding on cost analyzed in the previous section, for any
given bidders with realized costs drawn from the cost
distributions, there are only two winning candidates:
the preferred bidder with the lowest cost among its
peers, ¢;, and the nonpreferred bidder with the low-
est cost among its peers, c,. The former generates a
total value of v — g,z — ¢;, and the latter generates v —
g,z — ¢, upon being assigned the project. Therefore,
an efficient allocation should ensure that the contract
be assigned to the preferred lowest-cost supplier if
and only if v — g,z — ¢, > v — g,z — ¢, or, equivalently,
¢, — ¢, <z(q, — q;)- As is discussed above, in equilib-
rium, the preferred bidder with cost ¢; wins over its
nonpreferred counterpart with cost ¢, if and only if
¢; < ¢, + A. Therefore, as long as A = z(g, — q;), we
can ensure efficient allocation no matter what the real-
ized cost distribution among all bidders looks like. We
thus show that the scoring rule satisfying the condi-
tion A =z(g;, — q;) is ex post efficient.

In addition to ex post efficiency, naturally, we are
also interested in the scoring rule achieving ex ante
efficiency. We say a scoring rule is ex ante socially effi-
cient if it maximizes the expected total value generated
in equilibrium. Given that the probabilities of assign-
ing the project to preferred and nonpreferred suppli-
ers are p;(c) and p;(c), respectively, the expected total
value generated in equilibrium is

e [ (0= 4z = IO (0 de

#n-0) [ @2 - Ip O de. (10)

PROPOSITION 2. Any scoring rules satisfying A =
z(qy, — q;) are both ex ante and ex post socially efficient.?

2 Notice that A*f < ¢ — ¢ requires that z(g, — q) < ¢ — c. When
z(q, — q;) = ¢ — ¢, any scoring rule with A > ¢ — ¢, under which none

Recall that we define A in Equation (8). Under the
efficient scoring rule, we have

At (q) — (7 (q) — 2)q = At (q,) — (F(q,) — 2) -

If we denote the value of the above as a constant i,
then A(F(q)) = (*(4) — 23 + ¥ and A('(,) =
(t*(q4) — 2)g, + Y. So the winner is essentially deter-
mined by

b— At () =b+ (z—t7(q))q; — ¥,

Notice that b+ (z — t*(q;))q; is just the expected total
cost to the buyer. So the efficient scoring rule essen-
tially internalizes the inferred information regarding
suppliers’ success probabilities and implements a rule
that ranks suppliers by their total expected cost to the
buyers. Such a scoring rule is efficient because the bid-
ders are “fairly” evaluated in the sense that the win-
ner is the one who can minimize the buyer’s expected
total cost or maximize the buyer’s expected payoff.

It is worth noting that the policy prescribed above
is independent of the distribution of suppliers’ costs
and types. This feature makes it easy to implement
an efficient scoring rule: The buyer only needs to esti-
mate the failure rates of suppliers and combine them
with its own loss from a failure. In fact, the coeffi-
cient A is exactly the difference in expected loss from
different suppliers.

Notice that because we do not specify the form of
A(t), many scoring rules with properly set parameters
can be efficient. For example, for the class of square-
root scoring rule with A(t) = w+/t, we have t*(q) =
w?/(49%) by Equation (4) and A defined in Equation (8)
becomes

2 2 2 2 2 2
Az[ﬂ_w_}_[z_z}zw__ﬂ (1)
29, 4q 29, Aq ] 4q 4q,
Because the efficient scoring rule requires A =z(g,—q;),
the efficient coefficient is

w=2./zq,q;.- (12)

For the logarithmic scoring rule with A(t) = win(1 +¢),
t* =1/q — 1, and thus the efficient coefficient w is char-
acterized by —g;, + wing, + ¢ — wln g, = z(q;, — q)-

jell, h).

of the nonpreferred suppliers wins over the preferred ones in equi-
librium (see the discussion around Equation (9)), and thus p,(c) and
p;(c) are independent of A, achieves the efficiency.
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Figure 3 Example of Expected Social Welfare
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The following example compares the expected
social welfare under our auctions with the contingent
payments to that under standard procurement auc-
tions. As we can see, the auction format we propose
can significantly improve the social welfare, especially
when there is considerable uncertainty about the out-
come (i.e., @ is around the middle).

ExamPLE 2. We let q,=1/3, q,=2/3, z=2, v=3,
and n =10, and assume the costs of preferred and
nonpreferred suppliers are uniformly distributed on
[0, 1]. We use the square-root scoring rule (i.e., A(t) =
wx/f) as an example. By Equation (12), the efficient
coefficient w is 4/3. Figure 3 depicts how the expected
social welfare achieved with the efficient scoring func-
tion changes with a. We use the expected social
welfare achieved in standard procurement auctions
(corresponding to A =0 in our setting) as a bench-
mark for comparison.

6. Optimal Scoring Rule

In addition to the efficiency criterion, another use-
ful design criterion is payoff maximization. Especially
in the private sector, firms are typically interested
in minimizing their procurement cost. When some
nonprice attributes also matter, as in our setting, firms
often intend to maximize their expected payoff or
minimize the expected total cost (including the possi-
ble loss from failure). Next, we examine how a buyer
should choose the scoring rule to maximize its own
expected payoff.

We can explicitly derive the buyer’s expected pay-
off (see the appendix for details) as

ol [Jaz+ et 19 s [ e e
.0

—n(l—a)/ |:qhz+c+f( )

The second term is the expected cost from a pre-
ferred supplier and the third term is the expected cost
from a nonpreferred supplier. In traditional procure-
ment auction settings (with suppliers being the same
regarding their type), the revenue is typically in the
form of v — n[ff[c + F(c)/f(c)]p(c)f(c)dc], in which
¢+ F(c)/f(c) is usually called the virtual cost. Along a
similar line, we can call g,z 4+ c+ E(c)/fi(c) and g,z +
¢+ E,(c)/f(c) virtual costs from a preferred supplier
and nonpreferred supplier, respectively. Virtual cost
essentially measures each supplier’s marginal contri-
bution to the buyer’s expected payment. The virtual
cost is different from actual cost by a term that cap-
tures the externality imposed to other suppliers. Three
features in our expected payoff stand out from tradi-
tional procurement auctions. First, in addition to their
costs, suppliers differ in their types in terms of success
probability, and thus we have two terms (one for each
type). Second, unlike in the traditional procurement
auction setting, we have gz and g,z in the virtual
cost. This is because suppliers may fail to meet the
requirement, and the buyer thus incurs the expected
loss from its value v. Third, because preferred sup-
pliers naturally have an advantage, their base payoff
also plays a role in the buyer’s expected payoff, as we
can anticipate.

We call a scoring rule that maximizes the expected
payoff in Equation (13) an optimal scoring rule. The
optimal scoring rule can be obtained from the first-
order condition of the expected payoff with respect
to A. Except for some special cases, the optimal A can-
not be expressed in an explicit form. Next, we focus
on two issues regarding the optimal scoring rule.
First, how is it different from the efficient design? Sec-
ond, how is it affected by the underlying model prim-
itives, especially cost distributions? We introduce the
following definition for the purpose of comparison.

DEerINITION 1. For two cumulative distribution
functions F(c) and F(c) (with the density functions

}m(c)fh(c) de.  (13)
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being f (c) and f(c), respectively), we say F(c) is a
distributional upgrade of F(c) if

F(c) ~ F(o) 14

for all ¢ where the above expressions are well defined.

The requirement (14) is one of conditional stochas-
tic dominance: Conditional on any maximum level of
cost, F(c) is less likely to yield a higher cost than F(c).
Similar conditions have often been used in the auc-
tion literature. For example, Maskin and Riley (2000)
use such a condition when they study asymmetric
auctions. Many classes of distributions or changes in
distribution can satisfy the condition of distributional
upgrade. For instance, shifts of distribution to the left
generate a distributional upgrade. By simple algebra,
we can verify that a uniform distribution on [1, 3]
is a distributional upgrade of a uniform distribution
on [2,4].

DEerFINITION 2. A distribution F(c) satisfies the reg-
ularity condition if F(c)/f(c) is increasing in ¢ for all ¢
where the expression is well defined.

The regularity condition is commonly adopted in
many procurement studies (e.g., Che 1993). Saying
that a distribution satisfies a regularity condition is
equivalent to saying that the distribution F(c) is log-
concave. Many distributions, including uniform, nor-
mal, exponential, and logistic distributions, satisfy the
regularity condition.

ProposITION 3. The optimal scoring rule is character-
ized by (first-order condition)

: F(c—8)  F(0)]dpio)
/M[qhz‘q’z_“fh(c—m‘ﬁ(c)] da S0

= ph(E - A) (15)

or by A =0 (corner solution). If F,(c) satisfies the regular-
ity condition and F/(c) is a distributional upgrade of F,(c),
then the optimal scoring rule satisfies APt < At

Recall that a nonpreferred supplier with cost ¢ is
comparable to a preferred supplier with ¢ + A in
equilibrium. A lower A means a greater chance for
the nonpreferred supplier to win over a preferred
supplier, and thus a higher equilibrium probability
of winning. Under the regularity and distributional
upgrade conditions, the above proposition suggests

that scoring rules should be biased to promote the
nonpreferred suppliers (compared to the “fairness”
of the efficient design). In other words, in equilib-
rium, the buyer under-rewards suppliers with higher
success probability for the sake of maximizing its
expected payoff.

The bias or under-rewarding can be seen even more
clearly from the scoring rule. For example, under the
square-root scoring rule A(t) = w+/t, by the A derived
in Equation (11), A%* < A*f is equivalent to

(wopt)z (wopt)Z (weff)Z (weff)Z
— < —
4q, 4q, 4q, 4q,

which leads to that wP' < w*. Recall that preferred
suppliers are willing to bear a high penalty ¢ for
project failure in general (by Lemma 1). Reducing w
(from w*® to w°P') simply cuts preferred suppliers’
advantage in the scoring rule, and essentially under-
rewards preferred suppliers’ advantage of their low
failure rate.

The intuition is as follows. First, for any scoring
rule with A > A, under the regularity and distribu-
tional upgrade conditions, we have

F(c)

<sz+c+m> > <qhz+c—A~l—%>.

This is because g,z + ¢ = g,z +c — A*f and F(c)/f,(c) >
E.(¢)/f,(c) > E(c—A)/f,(c—A). In other words,
under any scoring rule with A > A, the virtual cost
for a preferred supplier to fulfill the project is always
higher than that of a comparable nonpreferred sup-
plier. Notice that in Equation (13), in addition to the
preferred suppliers’ base payoff, the total expected
payment is the expectation of suppliers” weighted vir-
tual costs (with the weights being their respective
winning probability). Thus, the buyer obtains higher
expected payoff by choosing any scoring rule with
A < A*f. Second, a scoring rule also affects the pre-
ferred suppliers’ base payoff fci A Pr(c)de. In partic-
ular, the base payoff is increasing in A. Because the
buyer hopes to minimize the preferred suppliers’ base
payoff, a scoring rule with A < A** is more desirable
than the one with a higher A. Therefore, the optimal
scoring rule must satisfyA°?* < A*f under the regular-
ity and distributional upgrade conditions.

It is worth pointing out that the optimal scoring
rule prescribed by Proposition 3 is optimal among all

4
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possible A (including A > ¢ — ¢) and the optimal scor-
ing rule is always less than ¢ — ¢. In other words, it is
always beneficial for the buyer to use the scoring rule
to leverage the competition between the two groups
of suppliers by letting some low-cost nonpreferred
suppliers win over some high-cost preferred ones in
equilibrium. Intuitively, A > ¢ — ¢ cannot be optimal
because preferred suppliers’ base payoff is increasing
in A (see Equation (9)), and thus a larger A means a
higher base payoff for preferred suppliers and a lower
expected payoff for the buyer. The finding is inter-
esting in that even when the difference between the
two types of suppliers’ success probabilities is so huge
that choosing any nonpreferred supplier is apparently
inefficient, the optimal choice for the buyer is still to
possibly award the project to a nonpreferred supplier
to promote the competition between the two groups.

Notice that the distributional upgrade we defined
is in a weak form that allows identical distributions.
Therefore, for the above proposition, one special case
is that suppliers’ types are independent of their costs,
such that F,(c) = F(c). With this independence, the
only condition needed is the regularity one.

It is also worth noting that the properties of the
optimal scoring rule derived in Proposition 3 (i.e.,
the value of A% and A%! < A*f under certain con-
ditions) do not depend on the form of A(t), because
we do not specify the form of the scoring rule in
the analysis. The optimal A can be calculated from
Equation (15), which, in general, is a function of the
number of suppliers. For any given class of scoring
rule (e.g., the square-root scoring rule A(t) = w\/1),
the optimal scoring rule (e.g., the optimal w in the
square-root scoring rule) can be computed by substi-
tuting the optimal A into Equation (8). We next use
an example to illustrate the optimal scoring rule.

ExamrLE 3. We consider a setting in which g, =1/4,
g, =1/2, z =3, and v = 3. Assume the costs of
preferred and nonpreferred suppliers are uniformly
distributed on [0,1]. Given a and n, A°%' can be
derived by the first-order condition characterized
by Equation (15). For example, when a = 1/2 and
n =23, we can obtain A°*' = 1/3, which is less than
A = z(g, — q,) = 3/4. Furthermore, we can check the
optimal parameters of different scoring rules. For
instance, under the square-root scoring rule, by sub-
stituting A°?* and A into Equation (11), we can

derive w°P* = ,/2/3 and w* = ,/3/2, respectively.
Under the scoring rule with A(f)=t* O <w <1), A
can be formulated as

w/(w—1) 1/(w—-1)
_ (% a2
=[3) @)
w/(w—1) 1/(w—1)
(1 (I
(G) @) ) o

We can thus derive that w°P'~0.42 and w*f~0.57.
Clearly, w°* < w*f in both cases, which implies that
under the optimal weighting scheme the buyer under-
states the importance of the penalty to create com-
petition pressure for the preferred suppliers. Figure 4

Figure 4 Example of Optimal w
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presents how the optimal parameter w°P* changes with
a and with the number of bidders n under different
scoring rules. We see that w°P" increases in n and in
a, because the competition within preferred suppliers
increases in n and in «, reducing the need to induce
competition by promoting nonpreferred suppliers. In
addition, by substituting A°P* into Equation (13), we
can calculate the maximum expected payoff under the
optimal scoring rule, 1.46, which is higher than that
under standard procurement auctions, 1.38.

When the cost distributions for the preferred and
nonpreferred suppliers do not satisfy the conditions
in Proposition 3, however, the optimal scoring rule
may not have A% < A*f ag is illustrated by the fol-
lowing example.

ExaMPLE 4. Continue with Example 3. For the costs
of preferred suppliers, we assume that they are uni-
formly distributed on [2,3] instead.®> Then we can
derive the optimal scoring rule A%®' =3/2 > A*f =3/4.

This example illustrates that it is not always prof-
itable for the buyer to discriminate against the pre-
ferred suppliers. The reason is that, in our setting,
suppliers’ contributions in the bidding competition
are determined by both their success probabilities
and their cost distributions. When preferred suppli-
ers, who have an advantage in success probability,
are disadvantaged in terms of cost distribution, they
may behave aggressively in the bidding competition.
As a result, a preferred supplier does not necessar-
ily contribute less to the buyer than its nonpreferred
counterpart who has the same expected total cost.

7. Extensions and Discussion
In this section, we consider relaxing some of the
model assumptions.

7.1. Degree of Failure

In the baseline model, we focus on the setting with
a zero-or-one outcome: The winner eventually either
succeeds or fails to meet the requirements specified
by the buyer. In other words, the outcome of the
project is either a success or a failure. The punish-
ment scheme is based on such an outcome. In some

® Notice that in this case, it is the preferred suppliers with cost
within [2,1+ A] who are comparable with the nonpreferred sup-
pliers with cost within [2— A, 1], provided that A > 1.

other cases, the buyer may also care about the degree
(if measurable) to which the winner does not meet the
requirements. One example of measurable degree is
the delay of delivery of the project. The buyer is con-
cerned not only about whether the winner can accom-
plish the project on time, but also about how soon the
winner can complete the project if it passes the due
date. In public sector procurement, such as infrastruc-
ture construction projects, the degree of delay affects
the perceived loss of social welfare. In private sector
procurement, the degree of delay could affect busi-
ness opportunity, such as the loss of consumer good-
will (e.g., resulting from delay in receipt of the goods
requested), and the timing of entering a new market.
We denote the requirement level (e.g., quality level)
specified by the buyer as r, r € (0,1). Instead of
assuming that suppliers can meet the requirement or
not, we let the outcome level x of supplier i satisfy
some distribution characterized by a probability den-
sity function g;(x), x € [0, 1]. If the realized outcome
x <r, the project meets the requirement; otherwise, it
does not, and the difference x —r measures the degree
of failure. We follow the same auction model as in the
baseline case except that the penalty t is now a unit
payment for unit degree of failure. Similarly, we can
formulate the payoff function for suppliers as

Ueo,t;c,g)= <b— c— t/l(x— r)g(x) dx) Pr(win).

For the buyer, the potential loss is generally a func-
tion of the degree of the failure. Therefore, instead
of a constant z, we introduce a loss function {(x —r),
which is increasing in its argument. Hence, the
expected payoff for the buyer when bidder i wins the
contract is

1
Vbt 8) = 0=b— [ {&=ngi)dx

+ tifl(x —1)gi(x) dx.

Following the same approach, all the analysis in the
baseline case can be conducted and similar results can
be derived. In particular, if the loss function is linear
(i.e, {(x —r)=2z(x —r)), we can simply denote g; =
frl (x —7)gi(x) dx, and all the results are the same as in
the baseline case. The only difference is the interpre-
tation of 4: In the baseline case, g is the probability
of failing to meet the requirements, and here g is the
expected degree of failure.
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7.2. Multiple Types of Suppliers

The basic insight derived from our baseline set-
ting holds not just for two supplier types but
also for multiple types of suppliers. Now we sup-
pose there are k types of suppliers, indexed by
6=1,2,...,k, and the corresponding failure proba-
bilities are g, q,, . .., g;,. Without loss of generality, we
assume ¢; < g, < --- < g;. We denote the probability of
any individual supplier’s being type 6 as a, and the
associated cost distribution as Fy(c) = fcc f(x, q) dx.
Everything else follows the baseline setting.

Lemma 1 continues to hold because the analysis is
not affected by the number of supplier types. So sup-
pliers place bids on penalty, t*(g,), along the same
principle based on their private information of their
failure probabilities. Similar to A, for 6 =2, ..., k, we
now introduce A,:

Ay =[A(t"(9o-1)) — Go-11"(Go-1)] — [A(t*(g5)) — 901" (90)]-

We also define m,(c) and cj, such that S(b,(c), t*(gy)) =
S(by_1(my(c)), t*(go_1)). Based on these notations, we
can formulate the equilibrium probability of winning
for a supplier with type 6 and cost c:

-1

po(c) = |:Z a;[1=FE(mq (m (- my(0)))]+ a1 - Fy(c)]

i=1

k n—1
Ly ai[l—E(m;l(m;ﬂ(---m;il(c)»)]} .

i=0+1

We can then obtain k equilibrium bidding functions
on cost in the same way as in Proposition 1, one for
each type. Specifically,

‘ d
bk(c):C‘i‘th*(%)‘F%/
?*+ ci i dx + CE d
be(c)ZC"‘%t*(%)‘i‘Z_g 1fi PO | oo x/
po(c)

0=1,...,k—1),

where my(c) =c+ Ay and c; =c — A,.

Analogous to the two-type case, any scoring rules
satisfying Ay =z(q, — q4_1), 6 =2,3, ..., k, are socially
efficient. The optimal scoring rule can also be char-
acterized in a similar way (with more complexity),
and basic intuition continues to hold. For example,
under similar regularity and distributional upgrade

conditions, it is revenue-maximizing for the buyer to
under-reward the penalty payment from the suppliers
with the lowest failure rate (compared to the suppli-
ers with the highest failure rate).

8. Conclusion

In this paper, we focus on an unexplored procure-
ment setting in which suppliers’ ability to successfully
accomplish the project is important to the buyer. We
consider a model in which suppliers differ in both
their costs and in their types in terms of success prob-
abilities. The buyer introduces a contingent contract
on the outcome of the project to further screen sup-
pliers beyond the basis of cost. In particular, suppliers
are asked to specify a penalty if they fail to deliver the
project as required. We find that an easy-to-implement
quasi-linear scoring rule can effectively separate sup-
plers in regard to their types. In equilibrium, suppli-
ers bid different amounts of monetary penalty based
on their own types. Suppliers’ bids on the cost take
into account the possible penalty in case of failure,
such that the inferred information regarding suppli-
ers’ success probability does not directly benefit the
buyer. However, the inferred information can be used
to find the most suitable supplier or even to lever-
age the competition. A properly designed scoring rule
can easily implement an efficient allocation in which
the supplier with the lowest expected total cost to
the buyer gets awarded the contract, and the inferred
information is essentially internalized. To minimize
the total procurement cost, the buyer may or may
not under-reward suppliers with high success prob-
ability, depending on the balance between suppliers’
success probabilities and the associated cost distribu-
tions. Because suppliers differ in two dimensions, the
conventional principle of under-rewarding the high
type can work only if the suppliers with high suc-
cess probability also have distributional advantage on
their cost; otherwise, over-rewarding the high type
could be optimal to minimize the procurement cost.
In addition, to promote the competition between dif-
ferent types of suppliers, it is optimal for the buyer
to always let at least some suppliers with low success
probability be able to win over some of those with
high success probability, even though such allocation
may appear rather inefficient when the difference in
their success probabilities is huge.
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Our analysis has several implications. First, we
illustrate the importance and effectiveness of intro-
ducing contingent contracts in screening suppliers
and call for procurement managers’ attention to prop-
erly use such an economic device in auction design.
Most noncommodity procurements are associated
with risk to some extent; suppliers may not deliver
the project on time, or the delivered project might
not satisfy the requirement prespecified. Buyers are
thus encouraged to recognize such risks and to take
some precaution in choosing the contractor ex ante
to avoid the considerable cost of possible lawsuits
or renegotiation. We show that a simple scoring rule
based on suppliers’ bids on cost and penalty in case
of failure can effectively help screen suppliers with-
out any operational cost associated with any physical
screening (e.g., visiting the supplier and checking its
facilities). Compared to standard auctions, the pro-
curement auctions with contingent contracts can sig-
nificantly improve both social welfare and the buyer’s
payoff.

Second, different designs of the scoring rule are
prescribed. The scoring rule to maximize the total
social welfare is remarkably simple and easy to imple-
ment, despite the complexity of suppliers’ strategic
behavior. Any scoring rule that essentially chooses
the supplier with the lowest total expected cost to
the buyer can achieve the goal. Such a rule is also
very easy to implement: The buyer only needs to esti-
mate the distribution of suppliers’ success probabili-
ties and its own loss from a failure. To minimize the
procurement cost, the buyer should adjust the scor-
ing rule. Such a rule may favor or disfavor suppliers
with high success probability. When suppliers with
high and low suitability have the same cost distri-
bution, the buyer may obtain a lower procurement
cost by favoring the suppliers with low suitability.
When the suppliers with lower success probability
have some advantage in their cost distribution, the
best design may favor those suppliers less and possi-
bly even disfavor them. Such results suggest that we
cannot automatically assume that the low-type sup-
pliers should be favored in a cost-minimizing design.
It is also worth noting that the design of scoring rules
we prescribe are independent of the forms of scor-
ing rules. Therefore, many commonly used classes
of scoring rules (e.g., square-root and logarithmic

scoring rules) with proper parameters can serve the
purpose of maximizing social welfare or minimiz-
ing procurement cost (within the class of quasi-linear
scoring rules), and the choice of the specific scoring
rule should depend on other criteria.

Third, our results also have implications for sup-
pliers’ bidding strategies. For example, suppliers with
high success probability should signal their confi-
dence by bidding aggressively on the penalty in case
of a failure. Meanwhile, they should anticipate the
possible penalty and take that into account when for-
mulating the bid on cost.

Several other issues may be interesting for future
research. First, the moral hazard problem of suppli-
ers can be discussed and incorporated in a future
study. In the current work, we focus on the adverse
selection problem in which suppliers differ in their
types, which are their inherent nature, and hence have
no control over the cost or probability of success.
Although the framework of adverse selection can
address a class of problems and serves as a good start-
ing point, further investigation on suppliers’ incentive
to exert effort to influence the cost and/or success
probability can be a good complement to the cur-
rent study. Second, it would be interesting to further
examine the format of contingent contracts and its
effect. For example, we may allow suppliers to pro-
pose different contingent contract formats to reflect
their types.
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Appendix

A.. Proof of Proposition 1

Proor. By the envelope theorem, we have (dU(by(c),
t*(q1); ¢, qi))/dc = dU/dc = —p;(c) from Equation (6) by
noting Pr(win) = p,(c) in equilibrium. Notice the boundary
condition U(b,(C), t*(q4); ¢, q4) = 0 (i.e., the nonpreferred
supplier with the highest cost earns zero profit in equilib-
rium). So we have

U(b@), e @i e m) = [ e
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Combining Equation (6) in equilibrium (so Pr(win) = p,(c))
with the above payoff function, we can obtain the bidding
function b, (c).

Applying the envelope theorem again to the preferred
suppliers” equilibrium payoff, we can derive

U (c), t(q1); ¢, q1) = Uy (C), *(q1); ¢, q1) +/CCPI(X) dx
and

U (), t*(q)); ¢ Ell)"‘f P x)dx

bi(c) =c+qt*(q)+ 1(0)

Then notice that a nonpreferred supplier with cost c ties
with a preferred supplier with cost m(c). We have

S pu(x) dx
pu(c)
=m(e) +qt*(q)
UBi(@), ()3 € 41) + fie p1(x) dx
pi(m(c))

¢+ gyt (qn) + = At (q,)

— At ()

=m(c) + q,t*(q)

U(b,(@), (@) & a1) + S pax)m' (x) dx
ph(c)

= A(t"(q)))- 17)

Multiplying both sides by p,(c) and taking the first-order
derivative with respect to ¢, we have

cp(e) + pu(€) +4ut" (@) pi(€) — pi(c) = A(E"(q4))pi(c)
=m'(c)py(c) + m(c)py,(c) + qit" (a))p),(c)
— pu(e)m’ (c) = A(E"(q)pi(c)-

Therefore, m(c) =c+ A and thus ¢* =¢ — A.
Substituting m(c) into Equation (17), we have

JE pa(x) dx

o M@

¢+ qut* () +

U(by(9), £ (q); & @) + J pu(x) dx

pr(c)

=c+A+qti(q)+
— At (q)))-

Therefore, we have

U(b@), (@) 9) = [ pu()ds

To show that the above bidding functions b, (c) and b;(c)
are equilibrium bidding strategies, we need to verify that
suppliers have no profitable deviation. For a nonpreferred
supplier with cost ¢, given everyone else’s bidding strategy,

deviating from the presumed bidding strategy is equivalent
to reporting a different cost ¢’. The payoff difference is

U(by,(c), t(qn); ¢, qn) — U(by(c), t*(q1); ¢, q1)
= (= 9p(c) = [ palx) d.

Because p,,(c) is decreasing in c, the payoff difference is neg-
ative for any ¢’ # c. Therefore, deviation is nonprofitable for
the nonpreferred bidders. Similar arguments apply to the
preferred bidders. O

A.2. Proof of Proposition 2
PRrROOF. As discussed in the text, A =z(g;, —
ex post efficiency. We next show that A =z(g,

g;) can ensure
—g;) can also

guarantee ex ante efficiency. First, note that p;(c) = p,(c —A)
and
dpu(©)|  _ @ file) dpi(e) (18)
aa |, 1—afy(c—A) dA

Notice that in the expression of the expected social wel-
fare Equation (10), the scoring rule is fully represented by A.
Take the first-order derivative of Equation (10) with respect
to A,

dp;(c)

na/(v—%z—c) f(©

ph( )

+nﬂ—w0/(v—%z—d file) de.

Noting that dp,(c)/dA =0 for ¢ > ¢* =¢ — A and that
dp;(c)/dA =0 for c <m™(c) = ¢ + A, we can reorganize the
above as

af (@-az-0)

Zfﬁmw

c—A
r-a [ g0 g ac
za/CiA(v_qu PI(C)fI
¢ d
—af (0 %z—c+A>p“”ﬁ()d
c+A
o @z—az-5P 9 f0)ac,
c+A

where the first equality is because of integration by substi-
tution and Equation (18). Because dp,(c)/dA > 0, the above
first-order derivative is positive if A < z(g, —g;) and nega-
tive if A > z(g, — g;). So A = z(gq;, — q;) maximizes the social
welfare. O

A.3. The Derivation of Expected Payoff
The buyer’s expected payoff from a supplier is equal to the
value created upon winning minus the supplier’s expected
payoff:

(v—q;z

— 0)p;(0) — U(by(0), £*(4)); ¢, ),
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where j € {h,1}. Notice U(b,(c), t*(q,); ¢, qn) = [; py(x) dx
and U(b(c), t*(q); ¢, q) = fci pp(x)dx + f;p,(x) dx from the
proof of Proposition 1. Then, the payoff from one supplier
(with probability a being preferred and with probability
(1 — a) being nonpreferred) is

aE[(v =gz = c)py(c) = U(by(c), t*(q1); ¢, 9]
+ (1 = E[(v - g4z = c)py(c) — U(by (), t(q4); ¢, q4)]

:a/f_(v—EIIZ—C)PI(C)—/;Ph(X) dx—/jpl(x) dx]f,(c) dc

-0 [ [@-nz-0m@ - [ ok
—a[ [o-az-c= 13 | f@de—a [ pito)as
o F,(c)
+i-af _v—qhz—c—f:(c)}mc)fh(c)dc
1 c ( ) c
—omaf Jazrer 23 |p@s@de-a [ s
—(-a) [ gzt e 2 |nof e

where the second equality is achieved by exchanging
the integration order and the third equality is because
a [ p Q) file)de + (1 — @) [Lp,(0fi(Ode = 1/n (ie, th
ex ante expected probability of winning for any bidder is
1/n). The total expected payoff for the buyer is thus n times
the above.

A.4. Proof of Proposition 3
Proor. Taking the first-order derivative of the expected
payoff Equation (13) with respect to A yields the following:

_ E(c)14dp;(c)
—apye=8)—n [ gz e+ 10 d’A fi(e) de
f ()] de,(0)
—n(l—a)/g[qhz+c+ﬁ7(c] L= £i(©)

Noting that dp,(c)/dA =0 for ¢ > ¢ — A and dp,(c)/dA =0
for c < ¢+ A, we can reorganize the above as

¢ E(c)1dpi(c)
_aph(c—A)—a/ |:qu+ +f( )] 1A f,c
A F}I(C) dph(c)
_(1—o¢)/£ [q,lz+c+fh(c)i| 1A fu(c)dc
¢ d
——apy(-n-af [gzrer 20| DO foa
¢ F,(c—A)1dp(c)
+“fg+A[""Z+"_“fh<cfA>] an I

e E(c—4) (07 dp(c)
_a/g+A[th_qlz_A+ﬂz(C—A) ﬂ(c)] da S0

- aph(E_ A)/

where the first equality is because of integration by substi-
tution and Equation (18). Notice that the first-order deriva-
tive at A= — ¢ is negative, and thus A =¢ — ¢ cannot be a
corner solution. Therefore, the optimal scoring rule is either
at the other corner A =0 (as we can show, A cannot be neg-
ative) or characterized by the above first-order derivative
being zero.

(Notice that any A > ¢ — ¢ is suboptimal. This is because
when A > ¢ — ¢, based on Equation (9), the buyer’s expected
payoff can be similarly formulated as

— [fé[q,z+c+f’ﬁ |

[ e+ @ -c 00|

—nt=a) [ [az+er 23 oo e,

which, by noting that p;(c) and p;,(c) are independent of A,
is decreasing in A.)

If F,(c) satisfies the regularity condition and F/(c) is a dis-
tributional upgrade of F,(c),

b(e—4d) _E(9) _ k()
SR ACRIG)

Because dp;(c)/dA > 0 and p;,(c — A) > 0, the above first-
order derivative is negative for all A > z(g, — ¢;). So A" <

Z(qh - ql) |
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