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A Proofs of Main and Supporting Results

A.1 Proof of Monopolistic Pricing (§4.1)

Proof. When the incumbent is a monopoly in the market, the boundary consumer who is indif-

ferent between purchasing from the incumbent and not purchasing at all, θ̃, can be formulated

as
(
θ̃ + γN

)
− p1 = 0. Therefore, θ̃ = p1 − γN . In a rational expectations equilibrium (REE),

consumers rationally anticipate the network size, so N and θ̃ need to be solved simultaneously.

Suppose 0 < θ̃ < 1, then N = N1 = 1 − θ̃. As a result, θ̃ can be solved as θ̃ = p1−γ
1−γ . As we can

easily check, p1−γ
1−γ > 0 if and only if p1 > γ; p1−γ

1−γ < 1 if and only if p1 < 1. Therefore, we can

summarize the demand function for the monopolistic incumbent as follows.

N1 (p1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, p1 ≤ γ;

1− p1−γ
1−γ , γ < p1 < 1;

0, 1 ≤ p1.

(A.1)

The incumbent sets p1 to maximize its profit function π1 (p1) = p1N1 (p1). It is easy to show

that the optimal p1 must fall in [γ, 1). The first order condition yields p̂1 =
1
2 . Therefore, if γ < 1

2 ,

p̂1 > γ, so p∗1 = p̂1 =
1
2 ; if γ ≥ 1

2 , p̂1 ≤ γ, so p∗1 takes the corner solution, i.e., p∗1 = γ.
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A.2 Proof of Proposition 1

Proof. To derive the pricing equilibrium, we need to examine three stages of strategic decisions

(i.e., the last three stages of the whole model). Along the line of backward induction, we derive the

pricing equilibrium in the following three steps: (1) first, determine the demands for both firms’

products as functions of the prices, Ni (p1, p2) (i = 1, 2); (2) next, determine the incumbent’s best

response in pricing as a function of the entrant’s price, p∗1 (p2); (3) finally, determine the optimal

price of the entrant, p∗2. Throughout the analysis for this proposition, we take the entrant’s product

quality q and the strength of network effects γ as given, and discuss the equilibrium outcomes when

these parameters take different values.

(1) We first derive the demand functions Ni (p1, p2) (i = 1, 2) given p1 and p2.

Consumers choose among three options: purchasing from the incumbent, purchasing from the

entrant, and not purchasing at all. The boundary consumer who is indifferent between purchasing

from the incumbent and purchasing from the entrant, θ̃12, can be derived by solving θ̃12+γN−p1 =(
θ̃12 + γN

)
q − p2, which yields θ̃12 = p1−p2

1−q − γN , where N = N1 +N2. Similarly, the boundary

consumer indifferent between purchasing from the entrant and not purchasing at all is θ̃2 =
p2
q −γN ;

the boundary consumer indifferent between purchasing from the incumbent and not purchasing at

all is θ̃1 = p1 − γN . As we can easily show, all consumers with θ > θ̃12 prefer purchasing from the

incumbent to purchasing from the entrant, and vice versa; likewise, all consumers with θ < θ̃2 (or

θ̃1) prefer purchasing nothing to purchasing from the entrant (or incumbent), and vice versa.

In REE, consumers form rational expectations about the total network size N when making

purchase decisions. Therefore,
{
θ̃12, θ̃2, θ̃1

}
need to be simultaneously solved with N . Note that

{N1, N2} and hence N all depend on the relative magnitude of θ̃12, θ̃2, θ̃1, and the bounds of

θ’s range [0, 1]. Comparing these relative magnitudes and solving
{
θ̃12, θ̃2, θ̃1, N

}
simultaneously

lead to different demand cases under different parameter conditions. For example, suppose 0 <

θ̃2

(
< θ̃1

)
< θ̃12 < 1, then N1 = 1 − θ̃12, N2 = θ̃12 − θ̃2, and as a result, N = N1 + N2 = 1 − θ̃2.

Substituting N = 1 − θ̃2 into θ̃2 = p2
q − γN , we can solve θ̃2 as θ̃2 = p2−qγ

q(1−γ) . Consequently,

N = q−p2
q(1−γ) , and θ̃12 = p1−p2

1−q − γ q−p2
q(1−γ) , θ̃1 = p1 − γ q−p2

q(1−γ) . We then need to verify under what

conditions 0 < θ̃2

(
< θ̃1

)
< θ̃12 < 1 holds. Solving the inequalities after substituting the solutions

of
{
θ̃12, θ̃2, θ̃1

}
, we arrive at the conditions: qγ < p2 < q, and p2

q < p1 <
(q−γ)p2+q(1−q)

q(1−γ) .
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In a similar way to the case of 0 < θ̃2

(
< θ̃1

)
< θ̃12 < 1 analyzed above, we can exhaust all cases

of different relative magnitudes of θ̃12, θ̃2, θ̃1 and the bounds [0, 1], which gives us the demands in

different regions, as summarized in Table A1.

Table A1: Demands Given Both Firms’ Prices p1 and p2

Cases Conditions N1 (p1, p2) N2 (p1, p2) N (p1, p2)

(A) 0 < p2 ≤ qγ:

(A1) 0 < p1 ≤ p2 + (1− q) γ; 1 0 1

(A2) p2 + (1− q) γ < p1 < p2 + (1− q) (1 + γ); 1 + γ − p1−p2
1−q

p1−p2
1−q

− γ 1

(A3) p2 + (1− q) (1 + γ) ≤ p1 < 1 + γ 0 1 1

(B) qγ < p2 < q:

(B1) 0 < p1 ≤ γ; 1 0 1

(B2) γ < p1 ≤ p2
q
; 1−p1

1−γ
0 1−p1

1−γ
(< 1)

(B3) p2
q

< p1 <
(q−γ)p2+q(1−q)

q(1−γ)
; 1− p1−p2

1−q
+ γ q−p2

q(1−γ)
p1−p2
1−q

− p2
q

q−p2
q(1−γ)

(< 1)

(B4) (q−γ)p2+q(1−q)
q(1−γ)

≤ p1 < 1 + γ 0 q−p2
q(1−γ)

q−p2
q(1−γ)

(< 1)

(C) q ≤ p2 < q (1 + γ):

(C1) 0 < p1 ≤ γ; 1 0 1

(C2) γ < p1 ≤ 1; 1−p1
1−γ

0 1−p1
1−γ

(< 1)

(C3) 1 < p1 < 1 + γ 0 0 0

(2) We next derive the incumbent’s best response function p∗1 (p2).

Based on the demands derived in Table A1, we can formulate the profit function of the incum-

bent given the entrant’s price, π1 (p1; p2). For example, according to Case (A) in Table A1, when

0 < p2 ≤ qγ, we have

π1 (p1; p2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1, 0 < p1 ≤ p2 + (1− q) γ;

p1

(
1 + γ − p1−p2

1−q
)
, p2 + (1− q) γ < p1 < p2 + (1− q) (1 + γ) ;

0, p2 + (1− q) (1 + γ) ≤ p1 < 1 + γ.

(A.2)

It is easy to see that any p1 < p2 + (1− q) γ or p1 > p2 + (1− q) (1 + γ) cannot be the opti-

mal price for the incumbent. Therefore, we only need to focus on the second segment in (A.2).

The first order condition yields the solution p̂1 = 1
2 [(1− q) (1 + γ) + p2]. We then need to com-

pare p̂1 against the two bounds of that segment, p2 + (1− q) γ and p2 + (1− q) (1 + γ). Note

that p̂1 < p2 + (1− q) (1 + γ) automatically holds, and p̂1 > p2 + (1− q) γ if and only if p2 <
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(1− q) (1− γ). Because 0 < p2 ≤ qγ under Case (A), we also need to compare (1− q) (1− γ) with

qγ: (1− q) (1− γ) < qγ if and only if q > 1− γ. Altogether, we have the following three subcases:

(a) if q > 1− γ and 0 < p2 < (1− q) (1− γ) (< qγ), then p∗1 (p2) =
1
2 [(1− q) (1 + γ) + p2], and the

demands fall into Case (A2) as in Table A1; (b) if q > 1 − γ and (1− q) (1− γ) < p2 ≤ qγ, then

p∗1 (p2) = p2+(1− q) γ, and the demands fall into Case (A1) as in Table A1 (in fact, the intersecting

bound between Cases (A1) and (A2)); (c) if q ≤ 1 − γ and 0 < p2 ≤ qγ (≤ (1− q) (1− γ)), then

p∗1 (p2) =
1
2 [(1− q) (1 + γ) + p2], and the demands fall into Case (A2) as in Table A1.

Table A2: The Incumbent’s Best Response Function p∗1 (p2)

Cases Conditions p∗1 (p2) Demand Cases (as in Table A1)

(1) 0 < γ < 1
2
, 0 < q ≤ γ (< 1− γ):

(1a) 0 < p2 ≤ qγ; (1−q)(1+γ)+p2
2

(A2)

(1b) qγ < p2 < q
(1−q)−

√
(1−q)(1−γ)

γ−q
; (q−γ)p2+q(1−q)

2q(1−γ)
(B3)

(1c) q
(1−q)−

√
(1−q)(1−γ)

γ−q
≤ p2 < q 1

2
(B2)

(2) 0 < γ < 1
2
, γ < q ≤ 1− γ:

(2a) 0 < p2 ≤ qγ; (1−q)(1+γ)+p2
2

(A2)

(2b) qγ < p2 ≤ q
(1−q)
2−q−γ

; (q−γ)p2+q(1−q)
2q(1−γ)

(B3)

(2c) q
(1−q)
2−q−γ

< p2 < q min
{

p2
q
, 1
2

}
(B2) / (B3)

(3) 0 < γ < 1
2
, (γ <) 1− γ < q < 1:

(3a) 0 < p2 ≤ (1− q) (1− γ); (1−q)(1+γ)+p2
2

(A2)

(3b) (1− q) (1− γ) < p2 ≤ qγ; p2 + (1− q) γ (A1) / (A2)

(3c) qγ < p2 < q min
{

p2
q
, 1
2

}
(B2) / (B3)

(4) 1
2
≤ γ < 1, 0 < q < 1− γ (≤ γ):

(4a) 0 < p2 ≤ qγ; (1−q)(1+γ)+p2
2

(A2)

(4b) qγ < p2 < q
(1−q)−2(1−γ)

√
(1−q)γ

(γ−q)
; (q−γ)p2+q(1−q)

2q(1−γ)
(B3)

(4c) q
(1−q)−2(1−γ)

√
(1−q)γ

(γ−q)
≤ p2 < q γ (B1) / (B2)

(5) 1
2
≤ γ < 1, 1− γ ≤ q < 1:

(5a) 0 < p2 ≤ (1− q) (1− γ); (1−q)(1+γ)+p2
2

(A2)

(5b) (1− q) (1− γ) < p2 < qγ; p2 + (1− q) γ (A1) / (A2)

(5c) qγ ≤ p2 < q γ (B1) / (B2)

Following a similar manner, we can analyze the incumbent’s best response corresponding to the

demand case (B) in Table A1. Note that demand case (C) is irrelevant because N2 ≡ 0 in this

case, which means the entrant will not be able to make any profit if it prices within these regions.

As a result, p2 will not fall into this region in equilibrium, and hence the demand case (C) will not
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appear in equilibrium. Altogether, we summarize the incumbent’s best response p∗1 (p2) in Table

A2.

(3) We finally solve the entrant’s optimal price p∗2.

Based on the incumbent’s best response functions in Table A2, we can formulate the entrant’s

profit function when anticipating the incumbent’s best response in pricing, π2 (p2; p
∗
1 (p2)). For

example, consider Case (1) in Table A2, that is, when 0 < γ < 1
2 and 0 < q ≤ γ.

π2 (p2; p
∗
1 (p2)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p2

(
p∗1(p2)−p2

1−q − γ
)
= p2

(1−q)(1−γ)−p2
2(1−q) , 0 < p2 ≤ qγ;

p2

(
p∗1(p2)−p2

1−q − p2
q

)
= p2

q(1−q)−(2−q−γ)p2
2q(1−q)(1−γ) , qγ < p2 < q

(1−q)−
√

(1−q)(1−γ)
γ−q ;

0, q
(1−q)−

√
(1−q)(1−γ)

γ−q ≤ p2 < q.

(A.3)

It is easy to see that any p2 > q
(1−q)−

√
(1−q)(1−γ)

γ−q cannot be optimal for the entrant. Therefore, we

only need to focus on the first two segments of (A.3). The first order conditions for the first and the

second segments yield p̂2 =
1
2 (1− q) (1− γ) and p̂

′
2 =

q(1−q)
2(2−q−γ) , respectively. In order to determine

the optimal p∗2, we need to compare p̂2 and p̂
′
2 against the bounds 0, qγ, and q

(1−q)−
√

(1−q)(1−γ)
γ−q .

For example, if 0 < γ < 1
4 , then p̂2 > qγ and qγ < p̂

′
2 < q

(1−q)−
√

(1−q)(1−γ)
γ−q . As a result, p∗2 = p̂

′
2.

In total, there are 6 subcases under Case (1). Table A3 shows the detailed parameter conditions

with their respective equilibrium prices.

Following the same approach, we examine Cases (2) through (5) in Table A2 and derive the

equilibrium prices within various sub-regions of parameter values, as we summarize in Table A3.

Combining the cases with the same equilibrium outcome, we arrive at the equilibrium outcomes

described in Proposition 1 and Table 1 (as we indicate in the rightmost column in Table A3).

A.3 Proof of Corollary 1

Proof. Given that limγ↑1 1−γ
1+γ = 0, we can see that for any fixed q < 1, there exists a threshold

γ1(q) ∈ (0, 1) such that when γ > γ1(q), we enter region (iii). Then, it immediately follows that

limγ↑1 π∗1(q, γ) = 1− q < limγ↑1 πM
1 (γ) = 1. Consequently, there exists γ0(q) ∈ (γ1(q), 1) such that

for all γ ∈ (γ0(q), 1) we have π∗1(q, γ) < πM
1 (γ).
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Table A3: Optimal Pricing for the Entrant, p∗2

Cases Conditions p∗2
p∗1 (p2) Cases Demand Cases Equilibrium Cases

(as in Table A2) (as in Table A1) (as in Table 1)

(1) 0 < γ < 1
2
, 0 < q ≤ γ:

0 < γ ≤ 1
4
, 0 < q ≤ γ;

q(1−q)
2(2−q−γ)

(1b) (B3) (i)

1
4
< γ < 2−

√
2

2
, 0 < q ≤ 2γ2−4γ+1

1−2γ
; q(1−q)

2(2−q−γ)
(1b) (B3) (i)

1
4
< γ < 2−

√
2

2
, 2γ2−4γ+1

1−2γ
< q ≤ γ; qγ (1a) / (1b) (A2) / (B3) (ii)

2−
√

2
2

≤ γ ≤ √2− 1, 0 < q ≤ γ; qγ (1a) / (1b) (A2) / (B3) (ii)

√
2− 1 < γ < 1

2
, 0 < q ≤ 1−γ

1+γ
; qγ (1a) / (1b) (A2) / (B3) (ii)

√
2− 1 < γ < 1

2
, 1−γ

1+γ
< q ≤ γ 1

2
(1− q) (1− γ) (1a) (A2) (iii)

(2) 0 < γ < 1
2
, γ < q ≤ 1− γ:

0 < γ < 1
4
, γ < q ≤ 2γ2−4γ+1

1−2γ
; q(1−q)

2(2−q−γ)
(2b) (B3) (i)

0 < γ < 1
4
, 2γ2−4γ+1

1−2γ
< q ≤ 1−γ

1+γ
; qγ (2a) / (2b) (B3) / (A2) (ii)

0 < γ < 1
4
, 1−γ

1+γ
< q ≤ 1− γ; 1

2
(1− q) (1− γ) (2a) (A2) (iii)

1
4
≤ γ <

√
2− 1, γ < q ≤ 1−γ

1+γ
; qγ (2a) / (2b) (B3) / (A2) (ii)

1
4
≤ γ <

√
2− 1, 1−γ

1+γ
< q ≤ 1− γ; 1

2
(1− q) (1− γ) (2a) (A2) (iii)

√
2− 1 ≤ γ < 1

2
, γ < q ≤ 1− γ 1

2
(1− q) (1− γ) (2a) (A2) (iii)

(3) 0 < γ < 1
2
, 1− γ < q < 1 1

2
(1− q) (1− γ) (3a) (A2) (iii)

(4) 1
2
≤ γ < 1, 0 < q < 1− γ:

1
2
≤ γ < 1, 0 < q ≤ 1−γ

1+γ
; qγ (4a) / (4b) (A2) / (B3) (ii)

1
2
≤ γ < 1, 1−γ

1+γ
< q < 1− γ; 1

2
(1− q) (1− γ) (4a) (A2) (iii)

(5) 1
2
≤ γ < 1, 1− γ ≤ q < 1 1

2
(1− q) (1− γ) (5a) (A2) (iii)

A.4 Proof of Proposition 2

Proof. According to Proposition 1, the entrant’s equilibrium profit by choosing quality q can be

written as

π2 (q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(1−q)
8(1−γ)(2−q−γ) − cq, 0 < q ≤ max

{
2γ2−4γ+1

1−2γ , 0
}
;

(1−γ−q)qγ
2(1−q) − cq, max

{
2γ2−4γ+1

1−2γ , 0
}
< q ≤ 1−γ

1+γ ;

1
8 (1− q) (1− γ)2 − cq, 1−γ

1+γ < q < 1.

(A.4)

Solving the first-order condition for the first segment of (A.4), we have q∗1 = 2− γ −
√

(2−γ)(1−γ)
1−8c(1−γ) ;

the solution to the first-order condition for the second segment of (A.4) yields q∗2 = 1 −
√

γ2

γ−2c .

For the third segment of (A.4), because d
dqπ2 (q) = −1

8 (1− γ)2 − c < 0, any q > 1−γ
1+γ cannot be

optimal.
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Define γ̂ (c) as the unique solution to −4γ3 + 4 (2c+ 3) γ2 − 8 (2c+ 1) γ + 8c + 1 = 0 for

γ ∈
(
0, 2−

√
2

2

)
. As we can verify, γ̂ (c) is well defined for c ∈

(
0,
√
2−1
4

)
. Note that q∗1 (γ̂) =

q∗2 (γ̂) =
2γ̂2−4γ̂+1

1−2γ̂ .

Consider Case (a) when 0 < c ≤ 1
16 . We examine it in the following subcases.

(i) When 0 < γ ≤ γ̂ (c), as we can show, 2γ2−4γ+1
1−2γ > 0, 0 < q∗1 ≤ 2γ2−4γ+1

1−2γ , and q∗2 ≤ 2γ2−4γ+1
1−2γ .

Therefore, π2 (q) reaches its peak within the first segment of (A.4) at q = q∗1, and any q > 2γ2−4γ+1
1−2γ

is suboptimal. As a result, the entrant’s optimal quality choice is q∗ = q∗1 = 2− γ −
√

(2−γ)(1−γ)
1−8c(1−γ) .

(ii1) When γ̂ (c) < γ < 2−√2
2 , as we can show, 0 < 2γ2−4γ+1

1−2γ < q∗1 and 2γ2−4γ+1
1−2γ < q∗2 < 1−γ

1+γ .

Therefore, π2 (q) reaches its peak within the second segment of (A.4) at q = q∗2, and any q <

2γ2−4γ+1
1−2γ or q >

1−γ
1+γ is suboptimal. As a result, q∗ = q∗2 = 1−

√
γ2

γ−2c .

(ii2) When 2−√2
2 ≤ γ < 1+

√
1−8c
2 , because 2γ2−4γ+1

1−2γ ≤ 0, the first segment of (A.4) no longer

applies. As we can show, 0 ≤ q∗2 ≤ 1−γ
1+γ within this region. Therefore, π2 (q) reaches its peak

within the second segment of (A.4) at q = q∗2, and any q >
1−γ
1+γ is suboptimal. As a result,

q∗ = q∗2 = 1−
√

γ2

γ−2c .

(iii) When 1+
√
1−8c
2 ≤ γ < 1, q∗2 < 0. Therefore, π2 (q) is decreasing in q for q ∈ [0, 1], and the

optimal quality choice q∗ = 0.

Combining (i) through (iii), we have the optimal quality choice of the entrant for Case (a) when

0 < c ≤ 1
16 . The other cases can be proven in a similar fashion.

A.5 Proof of Corollary 2

Proof. Follows immediately from Proposition 2 by setting q∗(γ, c) > 0.

A.6 Proof of Lemma 1

Proof. Comparing the equilibrium profits of the incumbent, π∗1 , in Proposition 1 and equation (2)

over various parameter regions, we have:

(1) If γ < 1
2 , according to equation(2), the incumbent’s monopoly profit π∗1 = 1

4(1−γ) .

(i) In region (i) of Proposition 1, (1−q)(4−q−3γ)2
16(1−γ)2(2−q−γ)2 > 1

4(1−γ) if and only if
(γ−q)(4γ2−(11−3q)γ+(q2−5q+8))

16(1−γ)2(2−q−γ)2 >

0. Note that 4γ2−(11− 3q) γ+
(
q2 − 5q + 8

)
> 0 always holds because (11− 3q)2−16 (q2 − 5q + 8

)
=

−7 (1− q)2 < 0. Therefore, (1−q)(4−q−3γ)2
16(1−γ)2(2−q−γ)2 > 1

4(1−γ) if and only if q < γ.
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(ii) In region (ii) of Proposition 1, (1+γ−q)2
4(1−q) > 1

4(1−γ) if and only if
(γ−q)(−(1−γ)q+1−γ−γ2)

4(1−q)(1−γ) > 0.

As we can show, because q < 1−γ
1+γ in this region, (1+γ−q)2

4(1−q) > 1
4(1−γ) if and only if q < γ.

(iii) In region (iii) of Proposition 1, 1
16 (1− q) (3 + γ)2 > 1

4(1−γ) if and only if q < 1− 4
(1−γ)(3+γ)2

.

Note that γ = 1−γ
1+γ = 1− 4

(1−γ)(3+γ)2
when γ =

√
2− 1.

(2) If γ ≥ 1
2 , according to equation (2), the incumbent’s monopoly profit π∗1 = γ.

(i) Region (i) of Proposition 1 does not apply when γ ≥ 1
2 .

(ii) In region (ii) of Proposition 1, (1+γ−q)2
4(1−q) > γ if and only if (1−q−γ)2

4(1−q) > 0, which always holds.

(iii) In region (iii) of Proposition 1, 1
16 (1− q) (3 + γ)2 > γ if and only if q < 1 − 16γ

(3+γ)2
. Note

that 1− 16γ

(3+γ)2
= 1− 4

(1−γ)(3+γ)2
when γ = 1

2 .

Altogether, we can conclude that sharing its IP leads to higher equilibrium profit than remaining

a monopoly when q < q̃ (γ), where q̃ (γ) is defined in (6)

A.7 Proof of Proposition 3

Proof. First note that the equilibrium profit of the incumbent in a duopoly market, π∗1 (q, γ) as

derived in Proposition 1, is decreasing in the entrant’s product quality q. To see this, we take the

first derivative with respect to q. In region (i) of Table 1, d
dqπ

∗
1 (q, γ) =

−(4−3γ−q)[(1−q)2+3(1−γ)2]
16(1−γ)2(2−q−γ)3 < 0;

in region (ii), d
dqπ

∗
1 (q, γ) = −1

4

[
1− γ2

(1−q)2
]
< 0 because q < 1−γ

1+γ < 1 − γ in this region; in region

(iii), d
dqπ

∗
1 (q, γ) = − 1

16 (3 + γ)2 < 0.

We prove the results summarized in Table 3 by deviding the value range of γ into five cases:

(a) 0 < γ ≤ 1
4 ; (b)

1
4 < γ ≤ 2−√2

2 ; (c) 2−√2
2 < γ ≤ γ̃; (d) γ̃ < γ ≤ 3−√5

2 ; (e) 3−√5
2 < γ < 1. We

analyze case (a) (0 < γ ≤ 1
4 ) in detail below. The other cases can be analyzed in a similar fashion.

(1) Recall the analysis and results for Proposition 2 and Lemma 1. For 0 < γ ≤ 1
4 , q

∗ (γ, c) =

2−γ−
√

(2−γ)(1−γ)
1−8c(1−γ) , and q̃ (γ) = γ. Solving q∗ (γ, c) = q̃ (γ) for c, we have c = 2−3γ

32(1−γ)2 . Recall that

q∗ (γ, c) is decreasing in c. Therefore, if c < 2−3γ
32(1−γ)2 , q

∗ (γ, c) > q̃ (γ), so sharing its IP would lead

to less profit for the incumbent than not sharing and remaining a monopoly. If k >
32(1−γ)2
2−3γ , with

either basic sharing (i.e., ρ = 1) or advanced sharing (i.e., ρ = 2), c = 1
ρk < 2−3γ

32(1−γ)2 . As a result,

either basic or advanced sharing is dominated by remaining a monopoly, so the optimal strategy

for the incumbent is no sharing (i.e., ρ∗ = 0). Thus, this case constitutes a part of region (1) in

Table 3.
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(2) Solving q∗ (γ, c) = 2 − γ −
√

(2−γ)(1−γ)
1−8c(1−γ) = 0 for c, we have c = 1

8(2−γ)(1−γ) . Therefore, if

2−3γ
32(1−γ)2 < c < 1

8(2−γ)(1−γ) (note that 2−3γ
32(1−γ)2 < 1

8(2−γ)(1−γ) for ∀γ ∈ (
0, 14

)
), 0 < q∗ (γ, c) < q̃ (γ),

so sharing its IP leads to more profit for the incumbent than not sharing, and meanwhile, the

entrant is willing to enter the market by achieving a strictly positive level of net profit with q∗ > 0.

For this reason, if 8 (2− γ) (1− γ) < k <
32(1−γ)2
2−3γ , the optimal strategy for the incumbent is basic

sharing (i.e., ρ∗ = 1 so that c = 1
k ). Note that advanced sharing (i.e., ρ = 2 so that c = 1

2k ) cannot

be optimal in this case because as we have shown, π∗1 (q, γ) (as in Proposition 1) is decreasing in

q, so helping the entrant reduce development cost (which would increase q∗ (γ, c)) would hurt the

incumbent’s equilibrium profit. Altogether, this case constitutes a part of region (2) in Table 3.

(3) When 16(1−γ)2
2−3γ < k < 8 (2− γ) (1− γ) (note that 16(1−γ)2

2−3γ < 8 (2− γ) (1− γ) for ∀γ ∈
(
0, 14

)
), if the incumbent chooses basic sharing (i.e., ρ = 1), then c = 1

k > 1
8(2−γ)(1−γ) . By the

above analysis in (2), q∗ (γ, c) = 0. In other words, with basic sharing, the entrant would be unable

to achieve a positive level of net profit, and hence q∗ = 0 would be its optimal quality choice;

as a result, the entrant would not enter the market in the first place. If the incumbent chooses

advanced sharing (i.e., ρ = 2), then c = 1
2k < 2−3γ

32(1−γ)2
(
< 1

8(2−γ)(1−γ)
)
. By the above analysis in

(1), q∗ (γ, c) > q̃ (γ) (> 0), indicating that the incumbent could achieve more profit by remaining a

monopoly than advanced sharing. Altogether, neither basic nor advanced sharing can outperform

the monopoly profit. Therefore, the optimal strategy for the incumbent is no sharing (i.e., ρ∗ = 0).

This case hence constitutes a part of region (3) in Table 3.

(4) When 4 (2− γ) (1− γ) < k <
16(1−γ)2
2−3γ (< 8 (2− γ) (1− γ)), if the incumbent chooses basic

sharing (i.e., ρ = 1), then c = 1
k > 1

8(2−γ)(1−γ) . By the above analysis in (2), q∗ (γ, c) = 0.

As a result, the entrant would not enter the market in the first place, and the incumbent would

maintain the monopoly profit. If the incumbent chooses advanced sharing (i.e., ρ = 2), then c = 1
2k ,

so 2−3γ
32(1−γ)2 < c < 1

8(2−γ)(1−γ) . By the above analysis in (1) and (2), 0 < q∗ (γ, c) < q̃ (γ). As a

result, the entrant is willing to enter the market by achieving a strictly positive level of net profit

with q∗ > 0, and meanwhile, the incumbent can achieve more profit than remaining a monopoly.

Therefore, the optimal strategy for the incumbent is advanced sharing (i.e., ρ∗ = 2). This case

hence constitutes a part of region (4) in Table 3.

(5) When k < 4 (2− γ) (1− γ), even with advanced sharing (i.e., ρ = 2), c = 1
2k > 1

8(2−γ)(1−γ) ,
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so q∗ (γ, c) = 0. In other words, even with advanced sharing, the entrant would still be unable to

achieve a positive level of net profit, and hence would not enter the market in the first place. As

a result, the incumbent remains a monopoly in equilibrium. This case hence constitutes a part of

region (5) in Table 3.
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