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S1 Proofs

We �rst prove a lemma that is useful in proving the results throughout the paper.

Lemma A.1. When either V or R is observed as a signal S, given any e�ort level x and y, a

positive signal always leads to a higher posterior belief of the service provider being a high type than

a negative signal, i.e., α1 (x, y) > α0 (x, y), ∀x, y ∈ [0, 1].

Proof. Recall that the posterior belief can be derived according to Bayes' rule as

α1 (x, y) =
Pr (S = 1|H,x, y)

Pr (S = 1|H,x, y) + Pr (S = 1|L, x, y)
=

1

1 + Pr(S=1|L,x,y)
Pr(S=1|H,x,y)

α0 (x, y) =
Pr (S = 0|H,x, y)

Pr (S = 0|H,x, y) + Pr (S = 0|L, x, y)
=

1

1 + Pr(S=0|L,x,y)
Pr(S=0|H,x,y)

Note that as long as Pr (S = 1|L, x, y) < Pr (S = 1|H,x, y), we have Pr(S=1|L,x,y)
Pr(S=1|H,x,y) <

1−Pr(S=1|L,x,y)
1−Pr(S=1|H,x,y) =

Pr(S=0|L,x,y)
Pr(S=0|H,x,y) , which is equivalent to α1 (x, y) > α0 (x, y). Clearly, Pr (S = 1|L, x, y) < Pr (S = 1|H,x, y)

holds whether signal S is V or R for ∀x, y ∈ [0, 1] throughout the paper (in both the baseline model

and the extended model).

Proof of Proposition 1:

Proof. According to Equation (9), the �rst order derivative with respect to y is a constant. Because

4αV
(
xV , yV

)
> 0 (by Lemma A.1), the service provider sets the optimal e�ort level of the client

as yV = 1. Consequently, the optimal e�ort level of the provider xV is the solution to the �rst order

condition (by Equation (8)) 1+µ
4 4α

V
(
xV , 1

)
= 2cxV . Denote

K (x) =
1 + µ

4
4αV (x, 1) =

1− µ
2 [3− µ− (1 + µ)x]

(A.1)
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after substituting αV1 and αV0 into the expression of 4αV (x, 1), and denote C (x) = 2cx. Hence,

an interior solution xV arises when K (x) and C (x) intersect within (0, 1). Notice that K (x)

is continuous and increasing in x for x ∈ [0, 1], and K (0) = 1−µ
2(3−µ) > 0 = C (0). Therefore,

when K (1) < C (1), that is, c > 1
8 , K (x) intersects C (x) within (0, 1). Furthermore, such an

intersection is unique because when c > 1
8 , K (x) = C (x) yields a unique solution within (0, 1), that

is, xV =
c(3−µ)−

√
c2(3−µ)2−c(1−µ2)
2c(1+µ) . It can be easily veri�ed that the expression within the square

root is positive, because c2 (3− µ)2 − c
(
1− µ2

)
> 0 if and only if c > 1−µ2

(3−µ)2 and 1−µ2
(3−µ)2 ≤

1
8 .

Proof of Corollary 1:

Proof. Rewrite xV =
(3−µ)−

√
(3−µ)2−(1−µ2)/c
2(1+µ) . It is thus easy to see that xV decreases in c. To show

xV decreases in µ, take the �rst order derivative of xV with respect to µ such that

∂xV

∂µ
=

12c− 1− µ (1 + 4c)− 4
√
c2 (3− µ)2 − c (1− µ2)

2 (1 + µ)2
√
c2 (3− µ)2 − c (1− µ2)

.

If the �rst part of the numerator is negative (i.e., 12c − 1 − µ (1 + 4c) < 0), then ∂xV

∂µ < 0 holds

immediately. If 12c − 1 − µ (1 + 4c) > 0, then 12c − 1 − µ (1 + 4c) − 4
√
c2 (3− µ)2 − c (1− µ2) <

0 if and only if [12c− 1− µ (1 + 4c)]2 − 16
[
c2 (3− µ)2 − c

(
1− µ2

)]
< 0, which holds because

[12c− 1− µ (1 + 4c)]2 − 16
[
c2 (3− µ)2 − c

(
1− µ2

)]
= − (8c− 1) (1 + µ)2 < 0 when c > 1

8 .

In order to prove Proposition 2, we �rst prove a useful lemma. De�ne

M (x; y) ≡ 1 + µ

4 (1 + w)

[
αR1 (x, y)− αR0 (x, y)

]
,

where 
αR1 (x, y) =

(x+y)+2w(1−y2)
(1+µ)(x+y)+4w(1−y2)

αR0 (x, y) =
2(1+w)−(x+y)−2w(1−y2)

4(1+w)−(1+µ)(x+y)−4w(1−y2) .

Lemma A.2. (1) M(x; y) is increasing in x for ∀x, y ∈ [0, 1]; and (2) ∂2

∂x2
M (x; y) is increasing in

x for ∀x, y ∈ [0, 1].
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Proof. (1) To show ∂
∂xM (x; y) = (1+µ)

4(1+w)

[
∂
∂xα

R
1 (x, y)− ∂

∂xα
R
0 (x, y)

]
> 0, note that:

∂

∂x
αR1 (x, y) =

2w (1− µ)
(
1− y2

)
[4w (1− y2) + (1 + µ) (x+ y)]2

≥ 0

∂

∂x
αR0 (x, y) =

−2 (1− µ)
(
1 + wy2

)
[4− (1 + µ) (x+ y) + 4wy2]2

< 0

for ∀x, y ∈ [0, 1] and µ ∈ (0, 1). Therefore, M(x; y) is increasing in x.

(2) Note that ∂2

∂x2
M (x; y) = (1+µ)

4(1+w)

[
∂2

∂x2
αR1 (x, y)− ∂2

∂x2
αR0 (x, y)

]
, and

∂2

∂x2
αR1 (x, y) =

−4w
(
1− µ2

) (
1− y2

)
[4w (1− y2) + (1 + µ) (x+ y)]3

∂2

∂x2
αR0 (x, y) =

−4
(
1− µ2

) (
1 + wy2

)
[4− (1 + µ) (x+ y) + 4wy2]3

.

It is easy to see that the denominator of the above ∂2

∂x2
αR1 (x, y) is positive and increasing in x. In

addition, its numerator is negative and independent of x. It follows that ∂2

∂x2
αR1 (x, y) is increasing

in x. Similarly, the numerator of the above ∂2

∂x2
αR0 (x, y) is negative and independent of x. To check

the sign of the denominator of ∂2

∂x2
αR0 (x, y), note that 4−(1 + µ) (x+ y)+4wy2 > 4−2 (1 + µ) > 0,

because x+ y ≤ 2 and µ < 1. Therefore, the denominator of ∂2

∂x2
αR0 (x, y) is positive and decreasing

in x. Consequently, ∂2

∂x2
αR0 (x, y) is decreasing in x. It follows that ∂2

∂x2
M (x), being proportional to

∂2

∂x2
αR1 − ∂2

∂x2
αR0 , is increasing in x.

Proof of Proposition 2:

Proof. First, note that (10) simpli�es to Pr
{
R = 1|θ, xR, yR

}
=

µθ(xR+yR)+2w
(
1−(yR)

2
)

2(1+w) , where

θ ∈ {H,L}, µH = 1 and µL = µ. Then, we have :


αR1 = Pr

{
θ = H|R = 1, xR, yR

}
=

(xR+yR)+2w
[
1−(yR)

2
]

(1+µ)(xR+yR)+4w[1−(yR)2]

αR0 = Pr
{
θ = H|R = 0, xR, yR

}
=

2(1+w)−(xR+yR)−2w
[
1−(yR)

2
]

4(1+w)−(1+µ)(xR+yR)−4w[1−(yR)2]
.

(A.2)

Similar to section 4.1, (5) can be simpli�ed to the following:

(
xR, yR

)
= arg max

0≤x,y≤1
αR0 + 1

2

(
αR1 − αR0

) (1+µ)(x+y)+4w(1−y2)
2(1+w) − cx2 ,
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where αR1 and αR0 are given in (A.2). Take the �rst derivative of the above objective function (which

we denote as Eπ) with respect to x and y, respectively, we get:

∂Eπ
∂x = 1+µ

4(1+w)4α
R
(
xR, yR

)
− 2cx

∂Eπ
∂y =

4αR(xR,yR)
4(1+w) (1 + µ− 8wy)

.

From Lemma A.1, we know 4αR
(
xR, yR

)
> 0 for any equilibrium e�ort levels. Hence, ∂Eπ

∂y = 0

implies the equilibrium e�ort level for the client is:

yR =


1+µ
8w if w ≥ 1+µ

8

1 otherwise

(A.3)

Denote M(x) ≡ M
(
x; yR

)
= 1+µ

4(1+w)4α
R
(
x, yR

)
. Consequently, the optimal e�ort level for the

provider, xR, is the �xed-point solution to the �rst order condition M (x)− 2cx = 0, whenever such

an interior solution exists within [0, 1]. Next, we will show that there exists a unique solution to

the above �rst order condition when c > 1
2M (1).

Denote C(x) = 2cx. Then C(0) = 0 and C(x) is increasing in x. It is easy to verify that

M(0) > 0 = C(0). From part (1) of Lemma (A.2), we know M(x) is also increasing in x. Then,

whether M(x) intersects C(x) and how many times they intersect depend on the concavity (and

convexity) of M(x) and the value of M(1). The concavity of M (x) depends on the sign of second

order derivative of M(x) with respect to x. Note that there are two mutually exhaustive and

exclusive cases for the value of ∂2

∂x2
M (x) |x=0: (1)

∂2

∂x2
M (x) |x=0 < 0 and (2) ∂2

∂x2
M (x) |x=0 ≥ 0.

In case (1), because part (2) of Lemma (A.2) states that ∂2

∂x2
M (x) is increasing in x, then if

∂2

∂x2
M (x) |x=0 < 0, we know that ∂2

∂x2
M (x) either changes sign once or never for x ∈ [0, 1]. In

the case when it changes sign at x̂ ∈ (0, 1), we must have M(x) is concave in x for x ≤ x̂ (due

to negative second order derivative in this range) and convex in x for x ≥ x̂ (due to positive

second order derivative). In the case when it never changes sign, we know M(x) is concave in x for

x ∈ [0, 1]. In case (2), because part (2) of Lemma (A.2) states that ∂2

∂x2
M (x) is increasing in x,

then if ∂2

∂x2
M (x) |x=0 > 0, we know that ∂2

∂x2
M (x) can never change sign. Thus, M(x) is convex in

x due to the positive second order derivative. To summarize, M (x) is either concave or convex for

all x ∈ [0, 1] or it is concave for x < x̂ and convex for x > x̂.
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Knowing the concavity (and convexity) of M (x) and M(0) > 0, it follows that if C(1) = 2c >

M (1), thenM (x) intersects C(x) exactly once in the range of x ∈ [0, 1]. In addition, the intersection

point is the �xed point solution to M (x) = 2cx, i.e., xR.

Proof of Corollary 2:

Proof. From (A.3), it is straightforward to see that for w > 1+µ
8 , yR is decreasing in w and inde-

pendent of c. For c > 1
2M(1), since xR is the unique solution to M(x) = 2cx (Proposition 2), we

know xR is decreasing in c because M(x) is independent of c and 2cx is decreasing in c. Similarly,

if we can show M (x) is decreasing in w, then xR must be decreasing in w. Next, we will prove that

M (x) is decreasing in w in the following two cases: (1) when w > 1+µ
8 and (2) when w ≤ 1+µ

8 .

Case (1): When w > 1+µ
8 , we must have yR = 1+µ

8w . Substitute this yR into (A.2), we get:


αR1

(
x, yR = 1+µ

8w

)
= 64w2+3+µ(2−µ)+32wx

2[64w2+(1+µ)2+(1+µ)16wx]

αR0

(
x, yR = 1+µ

8w

)
= 64w−(3−µ)(1+µ)−32wx

2[64w−(1+µ)2−16w(1+µ)x]

It is straightforward to verify that αR1 decreases in w and αR0 increases in w by taking the �rst

derivative of them with respect to w:

∂αR
1

∂w
=
−8(1− µ)

[
16w(1 + µ) + (1 + µ)2x+ 64w2x

]
[(1 + µ)2 + 16wxR(1 + µ) + 64w2]

2 < 0

∂αR
0

∂w
=

8(1− µ) [(1 + µ) (8− (1 + µ)x)]

[(1 + µ)2 + 16w(1 + µ)xR − 64w]
2 > 0.

Therefore, M
(
x; yR = 1+µ

8w

)
=
[
αR1 − αR0

] 1+µ
4(1+w) is decreasing in w.

Case (2): When w ≤ 1+µ
8 , we must have yR = 1. Substitute this yR into (A.2), we get:

M
(
x; yR = 1

)
=
[
αR1 − αR0

] 1 + µ

4(1 + w)
=

1− µ
8(1 + w)− 2(1 + µ)(1 + x)

, (A.4)

which is decreasing in w. To summarize, M
(
x; yR

)
is decreasing in w for any w ≥ 0.

To see how xR and yR change in µ, �rst, it is obvious that yR = min
{

1+µ
8w , 1

}
is weakly

increasing in µ. When w ≤ 1+µ
8 so that yR = 1, take the �rst derivative of (A.4) with respect to x,

∂

∂µ
M
(
x; yR = 1

)
=

− (1− x)− 2w

(3 + 4w − x− µ− µx)2
< 0.
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Therefore, M
(
x; yR = 1

)
is decreasing in µ, so xR is decreasing in µ. When w > 1+µ

8 so that

yR = 1+µ
8w , xR may change in µ non-monotonically, as Figure 5 illustrates.

Figure 5: xR Changes in µ (w = 0.25, c = 0.15)

Proof of Proposition 3:

Proof. yR ≤ 1 = yV comes directly from comparing yR = min
{

1+µ
8w , 1

}
to yV = 1. Clearly, the

inequality is strict for any w > 1+µ
8 .

In what follows, we �rst prove that 1
2M(1) < 1

8 , so as long as c > 1
8 , x

R is the unique solution

to M(x) = 2cx. From the proof of Corollary 2, we know that M(x) is decreasing in w, i.e.,

M (1|w>0) < M (1|w=0). When w = 0, we have yR|w=0 = 1. Recall, when yR = 1, M(x) simpli�es

to (A.4). It follows that

M (x|w=0) =
1− µ

2 [3− µ− (1 + µ)x]
,

from which we get M (1|w=0) = 1
4 . Therefore, we have

1
2M(1) ≤ 1

8 and the inequality is strict for

any w > 0.

Next, we will show that when w = 0, xR = xV . To see this, note that the above M (x|w=0) is

the same as K(x) de�ned in (A.1). From the proof of Proposition 1, we know that xV is the unique

solution to K(x) = 2cx when c > 1
8 . Therefore, x

V is also the unique solution to M (x|w=0) = 2cx,

i.e., when w = 0, xR = xV . Finally, combing this xR|w=0 = xV with the fact that xR is decreasing

in w (Corollary 2), we know that xR ≤ xV and the inequality is strict for any w > 0.
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Proof of Proposition 4:

Proof. Note that EV =
(1+µ)(xS+yS)

4 , where S = V or R. The rest follows directly from applying

the results in Proposition 3 (i.e., xR ≤ xV and yR ≤ yV ).

Proof of Proposition 5:

Proof. Because ye = min
{

1+µ
8w , 1

}
, yR = min

{
1+µ
8w , 1

}
and yV = 1, we have yR = ye ≤ yV and

the inequality is strict for w > 1+µ
8 .

In order to prove Proposition 6, we �rst prove a useful lemma. De�ne

M̃ (x; y) ≡ σH + σLµ

4 (1 + w)

[
α̃R1 (x, y)− α̃R0 (x, y)

]
,

where 
α̃R1 (x, y) =

σH(x+y)+2σHw(1−y2)
(σH+σLµ)(x+y)+2(σH+σL)w(1−y2)

α̃R0 (x, y) =
2(1+w)−σH(x+y)−2σHw(1−y2)

4(1+w)−(σH+σLµ)(x+y)−2w(σH+σL)(1−y2) .

Lemma A.3. (1) M̃ (x; y) is increasing in x for ∀x, y ∈ [0, 1]; and (2) ∂2

∂x2
M̃ (x; y) is increasing in

x for ∀x, y ∈ [0, 1].

Proof. (1) To show ∂
∂xM̃ (x; y) = σH+σLµ

4(1+w)

[
∂
∂x α̃

R
1 (x, y)− ∂

∂x α̃
R
0 (x, y)

]
> 0, note that

∂

∂x
α̃R1 (x, y) =

2wσHσL (1− µ)
(
1− y2

)
[2w (1− y2) (σH + σL) + (σH + µσL) (x+ y)]2

∂

∂x
α̃R0 (x, y) =

−2
[
(1 + w) (σH − µσL)− 2w

(
1− y2

)
(1− µ)σHσL

]
[4 (1 + w)− 2w (σH + σL) (1− y2)− (σH + µσL) (x+ y)]2

Clearly, ∂
∂x α̃

R
1 (x|y) ≥ 0 because σH , σL ∈ (0, 1] and µ ∈ (0, 1). Denote the numerator of the above

∂
∂x α̃

R
0 (x, y) as −2 ·N0.

∂
∂x α̃

R
0 (x|y) < 0 because N0 is positive. To show N0 > 0, rewrite N0 as the
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following:

N0 = (1 + w)σH

(
1− σL

σH
µ

)
− w

(
1− y2

)
(1− µ)σHσL

≥ (1 + w)σH (1− µ)− w
(
1− y2

)
(1− µ)σHσL

= σH (1− µ)
[
1 + (1− σL)w + σLwy

2
]

> 0,

where the �rst inequality is from substituting σL
σH
≤ 1 and the last inequality is from σH , σL ∈ (0, 1]

and µ ∈ (0, 1).

(2) Note that ∂2

∂x2
M̃ (x; y) = σH+σLµ

4(1+w)

[
∂2

∂x2
α̃R1 (x, y)− ∂2

∂x2
α̃R0 (x, y)

]
, and

∂2

∂x2
α̃R1 (x, y) =

−4w
(
1− y2

)
(1− µ)σHσL (σH + σLµ)

[2w (σH + σL) (1− y2) + (σH + σLµ) (x+ y)]3

∂2

∂x2
α̃R0 (x, y) =

−4 (σH + σLµ)
[
(1 + w) (σH − σLµ)− w

(
1− y2

)
(1− µ)σHσL

]
[4 (1 + w)− 2w (σH + σL) (1− y2)− (σH + σLµ) (x+ y)]3

It is easy to see that the denominator of the above ∂2

∂x2
α̃R1 (x, y) is positive and increasing in x. In

addition, its numerator is negative and independent of x. It follows that ∂2

∂x2
α̃R1 (x, y) is increasing in

x. Notice that the numerator of the above ∂2

∂x2
α̃R0 (x, y) can be written as −4 (σH + σLµ)N0, where

N0 is the same as that de�ned in part(1) of the proof. Because N0 is shown to be positive, the

numerator of ∂2

∂x2
α̃R0 (x, y) is negative and independent of x. To check the sign of its denominator,

we re-write the terms inside the bracket of the denominator of ∂2

∂x2
α̃R0 (x, y) as:

4− (σH + σLµ) (x+ y) + 4w − 2w (σH + σL) + 2w (σH + σL) y2

≥ 4− (σH + σLµ) (x+ y)

> 0,

where the �rst inequality is from σH+σL ≤ 2 and the last inequality is from σH+σLµ < 2 and x+y ≤

2. Consequently, the denominator of ∂2

∂x2
α̃R0 (x, y) is positive and decreasing in x. It follows that

∂2

∂x2
α̃R0 (x, y) is decreasing in x. Thus, ∂2

∂x2
M (x), being proportional to ∂2

∂x2
α̃R1 (x, y)− ∂2

∂x2
α̃R0 (x, y),

is increasing in x.
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Proof of Proposition 6:

Proof. Substituting (15) into (10), we get:

Pr(R = 1|θ, x̃R, ỹR) = σθ
µθ(x̃R+ỹR)+2w

(
1−(ỹR)

2
)

2(1+w) ,

where θ ∈ {H,L}, µH = 1 and µL = µ. Clearly, Pr(R = 0|θ, x̃R, ỹR) = 1 − Pr(R = 0|θ, x̃R, ỹR).

Thus, we get the following α̃R1 and α̃R0 :
α̃R1 =

σH(x̃R+ỹR)+2σHw
(
1−(ỹR)

2
)

(σH+σLµ)(x̃R+ỹR)+2(σH+σL)w(1−(ỹR)2)

α̃R0 =
2(1+w)−σH(x̃R+ỹR)−2σHw

(
1−(ỹR)

2
)

4(1+w)−(σH+σLµ)(x̃R+ỹR)−2w(σH+σL)(1−(ỹR)2)

(A.5)

Then, the equilibrium e�ort levels are the solutions to the following problem:

(
x̃R, ỹR

)
= arg max

0≤x, y≤1
1
2 α̃

R
1

{
σH
1+w

[
1
2(x+ y) + w(1− y2)

]
+ σL

1+w

[µ
2 (x+ y) + w(1− y2)

]}
+1

2 α̃
R
0

{
2− σH

1+w

[
1
2(x+ y) + w(1− y2)

]
− σL

1+w

[µ
2 (x+ y) + w(1− y2)

]}
− cx2.

Take the �rst derivative of the objective function (which we denote as Eπ̃) with respect to x and

y, we have:

∂Eπ̃
∂x = (σH+σLµ)

4(1+w) 4α̃
R
(
x̃R, ỹR

)
− 2cx

∂Eπ̃
∂y =

4α̃R(x̃R,ỹR)
4(1+w) [(σH + σLµ)− 4wy (σH + σL)]

,

where 4α̃R
(
x̃R, ỹR

)
= α̃R1 − α̃R0 . Since 4α̃R > 0 (because of Lemma A.1), then ∂Eπ̃

∂y = 0 implies:

ỹR =


σH+σLµ

4w(σH+σL)
if w > σH+σLµ

4(σH+σL)

1 otherwise

. (A.6)

Denote M̃(x) ≡ M̃
(
x; yR

)
= (σH+σLµ)

4(1+w) 4α̃
R
(
x, ỹR

)
. Consequently, the optimal e�ort level for the

provider, x̃R, is the �xed-point solution to the �rst order condition M̃ (x)− 2cx = 0, whenever such

an interior solution exists within [0, 1].

The rest of the proof is similar to the proof for Proposition 2. Based on Lemma A.3, we can

verify that M̃(x) is either concave or convex for all x ∈ [0, 1] or there exists x̂ ∈ (0, 1) such that it

9



is concave for x < x̂ and convex for x > x̂. In addition, we know

M̃ (0) =
(σH+σLµ)[2w(1−y2)(σH−σL)+(σH−σLµ)y]

2[2w(σH+σL)(1−y2)+(σH+σLµ)y][4−(σH+σLµ)y+4w−2w(σH+σL)+2w(σH+σL)y2]
> 0

It follows that if C(1) = 2c > M̃ (1), then M̃ (x) intersects C(x) exactly once in the range of

x ∈ [0, 1]. In addition, the intersection point is the �xed point solution to M̃ (x) = 2cx, i.e., x̃R.

Also note that if C(1) = 2c < M̃ (1) , then M̃ (x) either intersects C(x) twice in the range of

x ∈ [0, 1] or is greater than C(x) for all x ∈ [0, 1]. However, in either case, x̃R = 1 is one of the

equilibria because ∂Eπ̃
∂x is positive at the corner solution x̃R = 1.

In order to prove Proposition 7, we �rst prove the following two useful lemmas. They are about

the monotonicity of M̃(x) under the two special cases examined in Proposition 7: (i) uninformative

private signal such that σH = σL = σ; (ii) informative symmetric private signal such that σH = γ

and σL = 1− γ (γ ∈
[
1
2 , 1
]
).

Lemma A.4. When σH = σL = σ ∈ (0, 1], M̃(x) is decreasing in w and increasing in σ.

Proof. With σH = σL = σ, ỹR in Proposition 6 simpli�es to:

ỹR =


1+µ
8w if w > 1+µ

8

1 otherwise

.

Substituting in σH = σL = σ and ỹR, we want to show M̃
(
x; ỹR

)
is decreasing in w and increasing

in σ. Because ỹR also depends on w, we examine M̃
(
x; ỹR

)
in two cases: (1) when w > 1+µ

8 , and

(2) when w ≤ 1+µ
8 .

Case (1),when w > 1+µ
8 , we have ỹR = 1+µ

8w . Substitute it into (A.5), we have:

α̃R1

(
x, ỹR =

1 + µ

8w

)
=

64w2 + 3 + µ(2− µ) + 32wx

2 [64w2 + (1 + µ)2 + (1 + µ)16wx]

α̃R0

(
x, ỹR =

1 + µ

8w

)
=

64w(1 + w)− σ
[
(3− µ)(1 + µ) + 64w2 + 32wx

]
2 {64w(1 + w)− σ [(1 + µ)2 + 64w2 + 16w(1 + µ)x]}

.
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It is easy to verify that the above α̃R1 decreases in w and the above α̃R0 increases in w by checking

their �rst derivative with respect to w, respectively:

∂α̃R1
∂w

=
−8(1− µ)

[
16w(1 + µ) + (1 + µ)2x+ 64w2x

]
[(1 + µ)2 + 16wx(1 + µ) + 64w2]2

< 0

∂α̃R
0

∂w
=

8σ(1− µ)
[
(1 + µ) (8− σ(1 + µ)x) + 16w (1− σ) (1 + µ) + 64w2 (1− σ)x

]
[(1 + µ)2σ + 16wσ(1 + µ)x− 64w − 64w2 (1− σ)]2

> 0

Therefore, M̃
(
x; ỹR = 1+µ

8w

)
=
[
α̃R1 − α̃R0

] σ(1+µ)
4(1+w) decreases in w for w > 1+µ

8 .

Case (2), when w ≤ 1+µ
8 , we have ỹR = 1. Substitute it into (A.5), we get

M̃
(
x; ỹR = 1

)
=

σ(1− µ)

8(1 + w)− 2σ(1 + µ)(1 + x)
, (A.7)

which is decreasing in w for 0 ≤ w ≤ 1+µ
8 . To summarize both cases, M̃(x) is decreasing in w for

all w ≥ 0.

Next, we will prove M̃(x; ỹR) is increasing in σ for all σ ∈ (0, 1]. Note that ỹR is independent of

σ and always positive. Therefore, in this proof, we can treat ỹR as a constant. With σH = σL = σ,

(A.5) simpli�es to

α̃R1 (x, y) =
(x+ y) + 2w(1− y2)

(1 + µ)(x+ y) + 4w(1− y2)

α̃R0 (x, y) =
2 (1 + w)− σ(x+ y)− 2σw(1− y2)

4(1 + w)− σ(1 + µ)(x+ y)− 4σw(1− y2)
.

It is easy to see that α̃R1 is independent of σ. We can verify that α̃R0 is decreasing in σ by checking

its �rst derivative with respect to σ:

∂

∂σ
α̃R0 (x, y) =

−2 (1 + w) (1− µ) (x+ y)

[4− σ (1 + µ) (x+ y) + 4w (1− σ) + 4wσy2]2
< 0

for µ ∈ (0, 1) and x+ y > 0. It follows that M̃ (x; y) =
[
α̃R1 (x, y)− α̃R0 (x, y)

] σ(1+µ)
4(1+w) is increasing in

σ for ∀x, y ∈ [0, 1].

Lemma A.5. When σH = γ and σL = 1− γ, where γ ∈
[
1
2 , 1
]
, M̃(x) is increasing in γ.
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Proof. Substituting σH = γ and σL = 1− γ into (A.6), we get

ỹR =


µ+(1−µ)γ

4w if w ≥ µ+γ−µγ
4

1 if w < µ+γ−µγ
4

. (A.8)

Because ỹR depends on γ, we need to show that M̃(x; ỹR (γ) , γ) is increasing in γ. By the chain

rule,

d

dγ
M̃
(
x; ỹR (γ) , γ

)
=

∂

∂γ
M̃ (x; y, γ) |y=ỹR +

∂

∂y
M̃ (x; y, γ) |y=ỹR ·

d

dγ
ỹR (γ) . (A.9)

It is easy to show that d
dγ ỹ

R (γ) ≥ 0 according to (A.8). Next, we will show that ∂
∂yM̃ (x; y, γ) |y=ỹR >

0. Because M̃ (x; y, γ) =
[
α̃R1 (x, y)− α̃R0 (x, y)

] (µ+γ−µγ)
4(1+w) , we start by examining the partial deriva-

tive of α̃R1 and α̃R0 with respect to y evaluated at y = ỹR. It is easy to con�rm that when σH = γ

and σL = 1− γ, (A.5) simplify to:

α̃R1 (x, y) =
γ (x+ y) + 2γw(1− y2)

(γ + µ− γµ) (x+ y) + 2w(1− y2)

α̃R0 (x, y) =
2(1 + w)− γ (x+ y)− 2γw(1− y2)

4 + 2w(1 + y2)− (γ + µ− γµ) (x+ y)
.

Take the partial derivative of the above α̃R1 and α̃R0 with respect to y, we get:

∂

∂y
α̃R1 (x, y) =

2w
(
1 + 2xy + y2

)
(1− γ) γ (1− µ)

[2w (1− y2) + (x+ y) (γ + µ− γµ)]2
> 0

∂
∂y α̃

R
0 (x, y) = 2

[4+2w(1+y2)−(x+y)(γ+µ−γµ)]2
{
w
[
−4(1 + w)y + y(8 + 8w + 2x+ y)γ − (1 + 2xy + y2)γ2

]
−γ +

[
1− γ + w(1 + γ)

(
1− (1 + 2xy + y2)γ

)]
µ
}

Denote the terms in the curly bracket of the above ∂
∂y α̃

R
0 as N1. In the next two paragraphs, we will

show ∂
∂y α̃

R
0 (x, y) |y=ỹR < 0 by showing that N1

(
y = ỹR

)
< 0 in two cases: (1) when w > µ+γ−γµ

4

and (2) when w ≤ µ+γ−γµ
4 .
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Case (1): If w ≥ µ+γ−γµ
4 , we must have ỹR = µ+γ−γµ

4w . Substitute it into N1, we get

N1

(
y = µ+γ−γµ

4w

)
=

γ(1−γ)(1−µ)[−16w2+(γ+µ−γµ)2+8w(−4+x(γ+µ−γµ))]
16w

< 0

because −16w2 + (γ + µ− γµ)2 < 0 and −4 + x(γ + µ− γµ) < 0. The last inequality is from x ≤ 1

and γ + µ− γµ < 2.

Case (2): If w < µ+γ−γµ
4 , we must have ỹR = 1. Substitute it into N1, we have

N1 (y = 1) = 4w2(2γ − 1) + µ− γ(1 + µ) + w [−4 + γ (9 + 2x(1− γ)(1− µ)− 2γ(1− µ)− 3µ) + µ]

= µ− γ(1 + µ) + w [4w(2γ − 1)− 4 + γ (9 + 2x(1− γ)(1− µ)− 2γ(1− µ)− 3µ) + µ]

< µ− γ − γµ+ w [(µ+ γ − γµ) (2γ − 1)− 4 + γ (9 + 2x(1− γ)(1− µ)− 2γ(1− µ)− 3µ) + µ]

= µ− γ − γµ+ 2w [−2 + γ (4 + x (1− γ) (1− µ))]

= µ− γ − γµ+ 4w (2γ − 1) + 2wγx (1− γ) (1− µ)

< (µ+ γ − γµ− 2γ) + (µ+ γ − γµ) (2γ − 1) + 2γ (1− γ) (1− µ)

= 2γ (µ+ γ − γµ)− 2γ + 2γ (1− γ − µ+ γµ)

= 0,

where both inequalities are obtained from substituting w < µ+γ−γµ
4 . To summarize both cases (1)

and (2), we have proved ∂
∂y α̃

R
0 |y=ỹR < 0. Therefore, we have

∂

∂y
M̃ (x; y, γ) |y=ỹR =

(µ+ γ − µγ)

4(1 + w)

[
∂

∂y
α̃R1 |y=ỹR −

∂

∂y
α̃R0 |y=ỹR

]
> 0.

Finally, we will show that the �rst term in (A.9) is positive, i.e., ∂
∂γ M̃ (x; y, γ) > 0 for any

given y ∈ [0, 1]. To see this, note that M̃ (x; y, γ) = (µ+γ−µγ)
4(1+w)

[
α̃R1 − α̃R0

]
, where (µ+γ−µγ)

4(1+w) is positive

and always increasing in γ because µ < 1. Therefore, as long as ∂
∂γ α̃

R
1 − ∂

∂γ α̃
R
0 > 0, we will have

∂
∂γ M̃ (x; y, γ) > 0. Take the partial derivative of α̃R1 and α̃

R
0 with respect to γ, respectively, we get:

∂α̃R1
∂γ

=

[
x+ y + 2w(1− y2)

] [
µ(x+ y) + 2w(1− y2)

]
[(µ+ γ − γµ) (x+ y) + 2w(1− y2)]2

> 0
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∂α̃R0
∂γ

=
(x+ y) [µ(x+ y)− 2(1 + µ)]− 8w(1− y2)− 2wy2(x+ y)(1 + µ)− 4w2(1− y4)

[4 + 2w(1 + y2)− (µ+ γ − γµ) (x+ y)]2
< 0,

where the last inequality is because µ(x+ y) < 2µ < 2(1 + µ). Thus, ∂
∂γ α̃

R
1 − ∂

∂γ α̃
R
0 > 0. It follows

that ∂
∂γ M̃ (x; y, γ) > 0 for ∀y ∈ [0, 1].

Altogether, we have established that all three terms on the left-hand side of (A.9) are positive,

so we have d
dγ M̃

(
x; ỹR (γ) , γ

)
> 0, i.e., M̃ (x) is increasing in γ.

Proof of Proposition 7:

Proof. (I) Comparing ỹR and yV (The First Row of Table 1)

From (A.6), we can verify that ỹR < 1 for w > σH+σLµ
4(σH+σL)

. Therefore, yV = 1 ≥ ỹR, where the

inequality is strict for w > σH+σLµ
4(σH+σL)

. In addition, we can re-write ye as:

ye =


1+µ
8w if w > 1+µ

8

1 otherwise

.

Note that σH+σLµ
4(σH+σL)

≥ 1+µ
8 for σH ≥ σL and µ < 1. Thus, we have

ỹR − ye =



σH+σLµ
4w(σH+σL)

− 1+µ
8w ≥ 0 if w > σH+σLµ

4(σH+σL)

1− 1+µ
8w > 0 if σH+σLµ

4(σH+σL)
≥ w > 1+µ

8

1− 1 = 0 if w ≤ 1+µ
8

.

The upper branch of ỹR − ye can be simpli�ed to (σH−σL)(1−µ)
8w(σH+σL)

, which is non-negative for σH ≥ σL

and µ < 1. Therefore, we have ỹR ≥ ye and the inequality holds when σH > σL.

(II) Comparing x̃R and xV (The Second Row of Table 1)

We compare x̃R and xV in two special cases: (a) the signal is uninformative, i.e., σH = σL = σ;

(b) the signal is informative and symmetric, i.e., σH = γ, σL = 1− γ (γ ∈
[
1
2 , 1
]
).

(II-a) Uninformative Signal: σH = σL = σ

(i) First, we want to show 1
2M̃(1) ≤ 1

8 , so x̃R is the unique solution to M̃(x) = 2cx for

c > 1
8 . Based on Lemma A.3, we know that M̃(x) is decreasing in w and increasing in σ, i.e.,

M̃ (1|w>0,σ<1) < M̃ (1|w=0,σ=1). When w = 0, we have ỹR|w=0 = 1. Recall that when ỹR = 1,
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M̃
(
x|ỹR = 1

)
is (A.7). It follows that

M̃ (x|w=0,σ=1) =
1− µ

2 [3− µ− (1 + µ)x]
,

from which we get M̃ (1|w=0,σ=1) = 1
4 . Therefore, we have

1
2M̃(1) ≤ 1

8 and the inequality is strict

for any w > 0 or σ < 1.

Having shown that 1
2M̃(1) ≤ 1

8 , we can conclude that for c > 1
8 , x̃

R is the unique solution to

M̃ (x) = 2cx. Following the fact that M̃(x) is increasing in σ (because of Lemma A.3), we know

x̃R must increase in σ.

(ii) Note that when σ = 1, M̃ (x) simpli�es to M(x) of Proposition 2 for all w. Therefore, we

have x̃R|σ=1 = xR. From Proposition 3, we know xR < xV for c > 1
8 . Combining with the fact that

x̃R is increasing in σ, we have x̃R ≤ x̃R|σ=1 < xV for c > 1
8 .

(II-b) Informative Symmetric Signal: σH = γ, σL = 1− γ (γ ∈
[
1
2 , 1
]
)

(i) First, we need to show that when σH = γ ∈
[
1
2 , 1
]
and σL = 1−γ, we have 1

2M̃(1) ≤ 1
8 , so that

for c > 1
8 , x̃

R is the unique solution to M̃(x) = 2cx. Because M̃(x) is increasing in γ (Lemma A.5),

we know that M̃ (1|γ<1) ≤ M̃ (1|γ=1). When γ = 1, it is easy to verify that ỹR|γ=1 = min
{

1
4w , 1

}
and

M̃ (x|γ=1) =


M̃
(
x|ỹR = 1

4w , γ = 1
)

= 4w
16w2+32w−1−8wx if w > 1

4

M̃
(
x|ỹR = 1, γ = 1

)
= 1

2(3+4w−x) if 0 ≤ w ≤ 1
4

.

Thus, when w > 1
4 , we have M̃ (1|γ=1) = 4w

16w2+24w−1 = 1
4w+6− 1

4w

< 1
1+6−1 < 1

4 , where the �rst

inequality comes from 4w > 1. When w ≤ 1
4 , we have M̃ (1|γ=1) = 1

4(1+2w) ≤
1
4 , where the last

inequality is true for all w ≥ 0. Therefore, we have 1
2M̃(1) ≤ 1

8 and the equality holds only for

γ = 1 and w = 0. It follows that for any c > 1
8 ≥

1
2M̃(1), x̃R is the unique solution to M̃(x) = 2cx.

Combining with the fact that M̃(x) is increasing in γ, we know that x̃R must be increasing in γ.

(ii) When γ = 1, we can solve x̃R by letting M̃ (x|γ=1) = 2cx. Therefore, for c > 1
8 , we have

x̃R|γ=1 =


2 + w − 1

16w −
√(

2 + w − 1
16w

)2 − 1
4c if w > 1

4

2w + 3
2 −

√(
2w + 3

2

)2 − 1
4c if 0 ≤ w ≤ 1

4

. (A.10)

Comparing this x̃R|γ=1 to xV of Proposition 1, we can show that x̃R|γ=1 < xV when µ < µ̃ (c, w);
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and x̃R|γ=1 ≥ xV when µ ≥ µ̃ (c, w), where

µ̃ (c, w) =


c(1−8w−16w2)

8cw−
√
−64cw2+c2[1−16w(2+w)]2

if w > 1
4

4w
[
c+
√
c2(3+4w)2−c

]
8c(1+w)(1+2w)−1 if 0 ≤ w ≤ 1

4 .

(A.11)

In addition, we know that x̃R is increasing in γ. Consequently, when µ < µ̃ (c, w), we must have

x̃R| 1
2
≤γ≤1 ≤ x̃R|γ=1 < xV . When µ ≥ µ̃ (c, w), we need to compare x̃R|γ= 1

2
to xV . Clearly, γ = 1

2

implies σH = σL = 1
2 = σ. According to Part (II-a), we know that x̃R|γ=σ= 1

2
< xV . Combining

with the fact that x̃R is increasing in γ, we know there exists a threshold value γ̃ (µ, c, w), such that

x̃R < xV for γ ∈ [12 , γ̃) and x̃R ≥ xV for γ ∈ [γ̃, 1].

(III) Comparing EV
(
x̃R, ỹR

)
and EV

(
xV , yV

)
(The Third Row of Table 1)

Recall that EV (x, y) = 1
4 (1 + µ) (x+ y). To compare EV

(
x̃R, ỹR

)
and EV

(
xV , yV

)
, we

compare
(
x̃R + ỹR

)
and

(
xV + yV

)
in two special cases: (a) the signal is uninformative, i.e.,

σH = σL = σ; (b) the signal is informative and symmetric, i.e., σH = γ, σL = 1− γ (γ ∈
[
1
2 , 1
]
).

(III-a) Uninformative Signal: σH = σL = σ

In this case, because we have x̃R < xV and ỹR < yV for ∀σ ∈ (0, 1], it follows that EV
(
x̃R, ỹR

)
<

EV
(
xV , yV

)
for all σ.

(III-b) Informative Symmetric Signal: σH = γ, σL = 1− γ (γ ∈
[
1
2 , 1
]
)

Because x̃R and ỹR are increasing in γ, and xV and yV are independent of γ, EV
(
x̃R, ỹR

)
>

EV
(
xV , yV

)
holds for some γ ∈

(
1
2 , 1
)
only if EV

(
x̃R, ỹR

)
|γ=1 > EV

(
xV , yV

)
. Therefore, we next

examine the case of γ = 1 and show under what conditions EV
(
x̃R, ỹR

)
|γ=1 > EV

(
xV , yV

)
.

First, if w ≤ 1
4 when γ = 1, we have ỹR = 1 = yV , thus EV

(
x̃R, ỹR

)
> EV

(
xV , yV

)
if and

only if x̃R > xV , which holds when µ >
4w
[
c+
√
c2(3+4w)2−c

]
8c(1+w)(1+2w)−1 according to the proof of Part (II-b)

(Equation (A.11)). Therefore, µ̂ (c, w) =
4w
[
c+
√
c2(3+4w)2−c

]
8c(1+w)(1+2w)−1 for ∀w ∈ (0, 14 ], c ∈

(
1
8 , 1
)
.

Second, if w > 1
4 when γ = 1, we have ỹR < yV . Let f (w, c) ≡ x̃R + ỹR = [2 + w −

1
16w −

√(
2 + w − 1

16w

)2 − 1
4c ] + 1

4w , and let g (µ, c) ≡ xV + yV =
c(3−µ)−

√
c2(3−µ)2−c(1−µ2)
2c(1+µ) + 1.

EV
(
x̃R, ỹR

)
> EV

(
xV , yV

)
if and only if f (w, c) > g (µ, c). As we can show, f (w, c) is decreasing

in w, and g (µ, c) is decreasing in µ. As we can verify, ∀c ∈
(
1
8 , 1
)
, g (µ = 1, c) < f

(
w = 1

4 , c
)
<

g (µ = 0, c) and f (w = 1, c) < g (µ = 1, c) < g (µ = 0, c). Therefore, there exists a ŵ (c) ∈
(
1
4 , 1
)

such that f (ŵ, c) = g (µ = 1, c). As a result, when 1
4 < w < ŵ, there exists a µ̂ (c, w) ∈ (0, 1) such
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that g (µ̂, c) = f (w, c) and g (µ, c) < f (w, c) if µ > µ̂.

Altogether, we have shown that for any c ∈
(
1
8 , 1
)
, w ∈ (0, ŵ (c)), and µ ∈ (µ̂ (c, w) , 1),

EV
(
x̃R, ỹR

)
|γ=1 > EV

(
xV , yV

)
. Because EV

(
x̃R, ỹR

)
|γ= 1

2
< EV

(
xV , yV

)
always holds, there

exists a threshold γ̂ (c, w, µ) ∈
(
1
2 , 1
)
such that when γ̂ < γ ≤ 1, EV

(
x̃R, ỹR

)
> EV

(
xV , yV

)
.

Proof of Proposition 8:

Proof. As we can show, when V alone is observed as a signal, the equilibrium e�ort

ŷV =


1 if 1+µ

8w ≥ 1

1+µ
8w if λ < 1+µ

8w < 1

λ if 1+µ
8w ≤ λ,

(A.12)

and x̂V is the unique solution within [0, 1] to the equation K
(
x̂V , ŷV

)
= 2cx̂V (for c > 1

8), where

K(x, y) =
[
αV1 (x, y)− αV0 (x, y)

] 1 + µ

4
=

1− µ
2 [4− (1 + µ) (x+ y)]

. (A.13)

When R alone is observed as a signal, the equilibrium e�ort

ŷR =


1 if 1+µ

8w ≥ 1

1+µ
8w if 1+µ

8w < 1,

(A.14)

and x̂R is the unique solution within [0, 1] to the equation M
(
x̂R, ŷR

)
= 2cx̂R (for c > 1

8), where

M (x, y) =
[
αR1 (x, y)− αR0 (x, y)

] (1 + µ)

4(1 + w)

=

[
(x+ y) + 2w(1− y2)

(1 + µ)(x+ y) + 4w(1− y2) −
2 (1 + w)− (x+ y)− 2w(1− y2)

4(1 + w)− (1 + µ)(x+ y)− 4w(1− y2)

]
(1 + µ)

4(1 + w)
. (A.15)

(i) Comparing (A.12) and (A.14), it is easy to see that ŷR = ŷV if 1+µ
8w ≥ λ, and ŷR < ŷV if

1+µ
8w < λ.

(ii) To compare x̂V and x̂R, notice that M (x, y)−K (x, y) can be simpli�ed as

1− µ
2
·
−4w

(
1− y2

)
[4− (1 + µ) (x+ y)]− 4wy2

[
4w
(
1− y2

)
+ (1 + µ) (x+ y)

]
[4− (1 + µ) (x+ y) + 4wy2] [4w (1− y2) + (1 + µ) (x+ y)] [4− (1 + µ) (x+ y)]

< 0.
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Therefore,M (x, y) < K (x, y) for any x, y. If 1+µ
8w ≥ λ, ŷ

R = ŷV . Therefore,M
(
x, ŷR

)
< K

(
x, ŷV

)
for any x. As a result, x̂R < x̂V for λ ≤ 1+µ

8w .

If 1+µ
8w < λ, substitute ŷV = λ and ŷR = 1+µ

8w into K(x, y) and M(x, y), respectively. We have

M

(
x, ŷR|w =

1 + µ

8λ

)
−K

(
x, ŷV

)
= − (1− µ)

2

[
1

4− (1 + µ) (x+ λ)
− 4λ (x+ λ)

1 + 2xλ+ λ2
· 1

2 [4− (1 + µ) (x+ λ)] + λ (1 + µ)

]
< − (1− µ)

2

[
1

4− (1 + µ) (x+ λ)
− 2 · 1

2 [4− (1 + µ) (x+ λ)]

]
= 0.

We can further show that M
(
x, ŷR

)
is decreasing in w. Notice that K

(
x, ŷV

)
is independent of

w. Therefore, for ∀w > 1+µ
8λ , M

(
x, ŷR

)
< M(x, ŷR|w = 1+µ

8λ ) < K(x, ŷV ) for any x. As a result,

x̂R < x̂V for λ > 1+µ
8w .

Proof of Proposition 9:

Proof. In the scenario when the client incorporates symmetric private signal into the review (with

σH = γ and σL = 1 − γ, γ ∈
[
1
2 , 1
]
), when V alone is observed as a signal, the equilibrium e�ort

remains the same as in the baseline model, that is,

ŷV =


1 if 1+µ

8w ≥ 1

1+µ
8w if λ < 1+µ

8w < 1

λ if 1+µ
8w ≤ λ,

(A.16)

and x̂V is the unique solution within [0, 1] to the equation K
(
x, ŷV

)
= 2cx (for c > 1

8), where

K(x, y) =
[
αV1 (x, y)− αV0 (x, y)

] 1 + µ

4
=

1− µ
2 [4− (1 + µ) (x+ y)]

. (A.17)
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When R alone is observed as a signal, as we can show, the equilibrium e�ort can be derived as

ˆ̃yR =



1 if w ≤ 1+µ
8

1+µ
8w if 1+µ

8 < w ≤ 1+µ
8λ

λ if 1+µ
8λ < w ≤ γ+(1−γ)µ

4λ

γ+(1−γ)µ
4w if w > γ+(1−γ)µ

4λ

(A.18)

and ˆ̃xR is the unique solution within [0, 1] to the equation M̃
(
x, ˆ̃yR

)
= 2cx (for c > 1

8), where

M̃ (x, y) =
[
α̃R1 (x, y)− α̃R0 (x, y)

] γ + (1− γ)µ
4(1 + w)

=

[
γ(x+ y) + 2γw(1− y2)

(γ + (1− γ)µ) (x+ y) + 2w(1− y2)
−

2 (1 + w)− γ(x+ y)− 2γw(1− y2)
4(1 + w)− (γ + (1− γ)µ) (x+ y)− 2w(1− y2)

]
γ + (1− γ)µ

4(1 + w)
.(A.19)

(i) Comparing (A.16) and (A.18), it is easy to conclude that ˆ̃yR = ŷV if w ≤ γ+(1−γ)µ
4λ , and

ˆ̃yR < ŷV if w > γ+(1−γ)µ
4λ .

(ii) To compare ˆ̃xR and x̂V as γ varies, we �rst show that M̃
(
x, ˆ̃yR

)
is increasing in γ.

To show this, note that d
dγ M̃

(
x, ˆ̃yR

)
= ∂

∂γ M̃
(
x, ˆ̃yR

)
+ ∂

∂yM̃
(
x, ˆ̃yR

)
d
dγ

ˆ̃yR. As we can check,

∂
∂γ α̃

R
1 (x, y) > 0 and ∂

∂γ α̃
R
0 (x, y) < 0 for any x and y. Therefore, we can easily conclude that

∂
∂γ M̃ (x, y) =

[
∂
∂γ α̃

R
1 − ∂

∂γ α̃
R
0

]
γ+(1−γ)µ
4(1+w) +

(
α̃R1 − α̃R0

) 1−µ
4(1+w) > 0 for any x and y (notice that

α̃R1 > α̃R0 always holds). For w ≤ γ+(1−γ)µ
4λ , ˆ̃yR is independent of γ, so d

dγ
ˆ̃yR = 0 in this case.

As a result, d
dγ M̃

(
x, ˆ̃yR

)
> 0. For w > γ+(1−γ)µ

4λ , d
dγ

ˆ̃yR = 1−µ
4λ > 0. We thus need to check the

sign of ∂
∂yM̃

(
x, ˆ̃yR

)
. As we can check, ∂

∂y α̃
R
1 (x, y) > 0 for any x and y, and ∂

∂y α̃
R
0 (x, ˆ̃yR) < 0 after

substituting ˆ̃yR = γ+(1−γ)µ
4w into the expression of ∂

∂y α̃
R
0 . Therefore, ∂

∂yM̃
(
x, ˆ̃yR

)
> 0, and hence

d
dγ M̃

(
x, ˆ̃yR

)
> 0. As a result, M̃

(
x, ˆ̃yR

)
is increasing in γ. Therefore, we can conclude that ˆ̃xR,

as the solution to M̃
(
x, ˆ̃yR

)
= 2cx, is also increasing in γ.

We next check the extreme case when γ = 1, and compare ˆ̃xR and x̂V in this case. When γ = 1,

M̃ (x, y) in (A.19) simpli�es to M̃ (x, y|γ = 1) = 1
2(4−x−y)+4w(1+y2)

. As a result, we can explicitly

solve M̃ (x, y) = 2cx for ˆ̃xR (y) such that

ˆ̃xR (y) |γ=1 =

c
[
4− y + 2w

(
1 + y2

)]
−
√
c
[
c (4− y + 2w (1 + y2))2 − 1

]
2c

. (A.20)
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Similarly, we can explicitly solve K (x, y) = 2cx for x̂V (y) such that

x̂V (y) =
c (4− (1 + µ) y)−

√
c2 (4− (1 + µ) y)2 − c (1− µ2)
2c (1 + µ)

. (A.21)

Notice that given y, ˆ̃xR (y) |γ=1 is independent of µ, whereas x̂V (y) is decreasing in µ given y

(because ∂
∂µK (x, y) = −(2−x−y)

[4−(1+µ)(x+y)]2 < 0).

Substituting ˆ̃yR from (A.18) into (A.20) and ŷV from (A.16) into (A.21), we can compare ˆ̃xR

and x̂V within di�erent regions:

(a) When w ≤ 1+µ
8 , substituting in ˆ̃yR = 1 and ŷV = 1, and solving ˆ̃xR = x̂V , we have

µ̃1 =
4w
[
c+

√
c2(3 + 4w)2 − c

]
8c(1 + w)(1 + 2w)− 1

. (A.22)

Because ˆ̃xR is independent of µ, and x̂V is decreasing in µ, ˆ̃xR > x̂V if µ > µ̃1.

(b) When 1+µ
8 < w ≤ 1+µ

8λ , ˆ̃yR = ŷV = 1+µ
8w . Notice that because both ˆ̃yR and ŷV depend on µ,

we cannot obtain an explicit su�cient and necessary condition on µ for ˆ̃xR
(

ˆ̃yR
)
> x̂V

(
ŷV
)
to hold.

Nevertheless, it is possible to obtain a su�cient condition instead. Notice that x̂V
(
ŷV = 1+µ

8w

)
<

x̂V (y = 1) (because x̂V (y) is increasing in y), and ˆ̃xR
(

ˆ̃yR = 1+µ
8w

)
> ˆ̃xR (y = λ) (because ˆ̃xR (y)

is increasing in y for y < 1
4w , and

1
4w > 1+µ

8w > λ in the region we are discussing). Therefore,

if ˆ̃xR (y = λ) > x̂V (y = 1) holds, then ˆ̃xR
(

ˆ̃yR = 1+µ
8w

)
> x̂V

(
ŷV = 1+µ

8w

)
holds as well. Solving

ˆ̃xR (y = λ) = x̂V (y = 1) for µ, we have

µ̃2 =

(
1− λ+ 2w

(
1 + λ2

)) [
c+

√
c2 (4− λ+ 2w (1 + λ2))2 − c

]
c (3− λ+ 2w (1 + λ2)) (5− λ+ 2w (1 + λ2))− 1

. (A.23)

Because ˆ̃xR (y = λ) is independent of µ, and x̂V (y = 1) is decreasing in µ, ˆ̃xR (y = λ) > x̂V (y = 1)

if µ > µ̃2. As a result, we have a su�cient condition: if µ > µ̃2, ˆ̃xR
(

ˆ̃yR
)
> x̂V

(
ŷV
)
.

(c) When 1+µ
8λ < w ≤ 1

4λ ,
ˆ̃yR = λ and ŷV = λ. Substitute them into (A.20) and (A.21), and

solving ˆ̃xR = x̂V for µ, we have

µ̃3 =

2
(
1 + λ2

)
w

[
λc+

√
c2 (4− λ+ 2w (1 + λ2))2 − c

]
4c(2 + w + λ2w)(2 + w + λ2w − λ)− 1

. (A.24)
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Again, because ˆ̃xR is independent of µ, and x̂V is decreasing in µ, ˆ̃xR > x̂V if µ > µ̃3.

(d) When w > 1
4λ ,

ˆ̃yR = 1
4w and ŷV = λ. Substitute them into (A.20) and (A.21), and solving

ˆ̃xR = x̂V for µ, we have

µ̃4 =
c
(
1− 8λw − 16w2

)
8cλw −

√
−64cw2 + c2 [1− 16w(2 + w)]2

. (A.25)

Similarly, we have ˆ̃xR > x̂V if µ > µ̃4.

Combining (a) through (d), we characterize the regions in which ˆ̃xR > x̂V holds, under the

extreme case of γ = 1. Figure 6 illustrates such regions (i.e., regions (a) and (b), as regions (c) and

(d) not applicable) when λ = 0 (i.e., the client fully determines his own e�ort).

Figure 6: Comparison of Equilibrium E�orts (γ = 1, λ = 0, c = 0.15)

In the other extreme case when γ = 1
2 , as we can show,

ˆ̃xR
(
σH = σL = 1

2

)
< ˆ̃xR (σH = σL = 1) <

x̂V (Notice that when σH = σL, ˆ̃yR = yR, so the results from the original model apply).

Altogether, we have shown that ˆ̃xR is increasing in γ, whereas x̂V is independent of γ; when

γ = 1
2 ,

ˆ̃xR < x̂V ; when γ = 1, there exists (c, w, µ, λ) such that ˆ̃xR > x̂V holds. Therefore, we

can conclude that there exists (c, w, µ, λ) such that for a certain threshold γ̃ (c, w, µ, λ) ∈
(
1
2 , 1
)
,

ˆ̃xR ≤ x̂V when γ ≤ γ̃, and ˆ̃xR > x̂V when γ > γ̃.
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S2 Di�erent Distributions for ξ and ε

S2.1 Arbitrary Support

In this section, we extend the supports of ξ and ε to show that our main results do not depend

on the speci�c choices of support in the paper. We now let ξ follow a uniform distribution over

an arbitrary support [−b1, a1], and ε follow a uniform distribution over [−b2, a2]. Thus, we have

the cdf's of the two random variables as G(ξ) = ξ+b1
a1+b1

and F (ε) = ε+b2
a2+b2

. Notice that the original

model in the paper corresponds to a1 = 0, b1 = 2, a2 = w, and b2 = 1.

Solve for xV and yV : Substituting G(ξ) into (2), we have Pr {V = 1|θ} = µθ(x+y)+a1
a1+b1

. Therefore,

the expected payo� of the service provider can be derived as

Eπ = αV0 +
1

2

(
αV1 − αV0

)
[Pr (V = 1|θ = H) + Pr (V = 1|θ = L)]− cx2

= αV0 +
1

2

(
αV1 − αV0

) (1 + µ) (x+ y) + 2a1
a1 + b1

− cx2,

where αV1 = a1+xV +yV

2a1+(1+µ)(xV +yV )
and αV0 = b1−xV −yV

2b1−(1+µ)(xV +yV )
. Taking the �rst derivative with respect

to x and y, we have

∂Eπ

∂x
=

1

2

(
αV1 − αV0

) 1 + µ

a1 + b1
− 2cx

∂Eπ

∂y
=

1

2

(
αV1 − αV0

) 1 + µ

a1 + b1

Because ∂Eπ
∂y is a positive constant, we have yV = 1. Meanwhile, xV is the solution within [0, 1] to

K
(
x, yV

)
= 2cx, where K (x, y) = (1+µ)

2(b1+a1)

[
αV1 (x, y)− αV0 (x, y)

]
.

Solve for xR and yR: Substituting G (ξ) and F (ε) into (10), we have

Pr {R = 1|θ} = 1− F
(
wy2

)
+
[
F
(
wy2

)
− F

(
wy2 − 1

)]
[1−G (−µθ (x+ y))]

=
a2 − wy2

a2 + b2
+

µθ (x+ y) + a1
(b1 + a1)(b2 + a2)
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Therefore, the expected payo� of the service provider can be derived as

Eπ = αR0 +
1

2

(
αR1 − αR0

)
[Pr (R = 1|θ = H) + Pr (R = 1|θ = L)]− cx2

= αR0 +
1

2

(
αR1 − αR0

) [2
(
a2 − wy2

)
a2 + b2

+
(1 + µ) (x+ y) + 2a1

(a1 + b1)(a2 + b2)

]
− cx2,

where αR1 =
a1+(xR+yR)+(b1+a1)

(
a2−w(yR)

2
)

2a1+(1+µ)(xR+yR)+2(b1+a1)(a2−w(yR)2)
and αR0 =

(b1+a1)
(
b2+w(yR)

2
)
−a1−(xR+yR)

2(b1+a1)(b2+w(yR)2)−2a1−(1+µ)(xR+yR)
.

Taking the �rst derivative with respect to x and y, we have

∂Eπ

∂x
=

1

2

(
αR1 − αR0

) 1 + µ

(a1 + b1)(a2 + b2)
− 2cx

∂Eπ

∂y
=

1

2

(
αR1 − αR0

) 1

a2 + b2

(
−4wy +

1 + µ

a1 + b1

)

As a result, we have yR = min
{

(1+µ)
4w(a1+b1)

, 1
}
, and xR is the solution within [0, 1] to M

(
x, yR

)
=

2cx, where M (x, y) = (1+µ)
2(a1+b1)(a2+b2)

[
αR1 (x, y)− αR0 (x, y)

]
.

Compare xV to xR, and yV to yR: It is easy to see that yR ≤ yV always holds. We numerically

solve and compare xV and xR for di�erent values of a1, b1, a2 and b2. We �nd that the general

result that xR < xV continues to hold. Figure 7 illustrates a representative comparison result.
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Figure 7: Equilibrium Comparison (ξ ∼ U [−2.25, 0.25], ε ∼ U [−1.25, 0.5], c = 0.15, w = 0.25)
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S2.2 Beta Distribution

In this section, we extend the distribution of ξ and ε from uniform distribution to a more general

distribution family, Beta distribution. Beta distribution is the most commonly used and well studied

distribution family over �nite supports. Speci�cally, we let z1 and z2 be random variables following

Beta distribution over [0, 1] with cdf L(zi) = 1 − (1 − zi)βi , where βi > 0, zi ∈ [0, 1], and i = 1, 2.

When βi = 1, the distribution reduces to uniform distribution; when βi > 1 (βi < 1), the distribution

skews to the right (the left). We then rescale z1 and z2 to �t the supports of ξ and ε such that

ξ = 2(z1 − 1) ∈ [−2, 0] and ε = z2(1 + w)− 1 ∈ [−1, w]. Consequently, the cdf's of ξ and ε can be

derived as G(ξ) = L
(
ξ
2 + 1

)
= 1−

(
− ξ

2

)β1
and F (ε) = L

(
ε+1
1+w

)
= 1−

(
1− ε+1

1+w

)β2
.

Solve for xV and yV : Substituting G(ξ) into (2), we have Pr {V = 1|θ} =
[
µθ(x+y)

2

]β1
. Therefore,

the expected payo� of the service provider can be derived as

Eπ = αV0 +
1

2

(
αV1 − αV0

) (
1 + µβ1

)(x+ y

2

)β1
− cx2.

Taking the �rst derivative with respect to x and y, we have

∂Eπ

∂x
=

1

2

(
αV1 − αV0

) (
1 + µβ1

) β1
2

(
x+ y

2

)β1−1
− 2cx

∂Eπ

∂y
=

1

2

(
αV1 − αV0

) (
1 + µβ1

) β1
2

(
x+ y

2

)β1−1

Because ∂Eπ
∂y > 0 for any y, therefore, yV = 1. Meanwhile, xV is the solution within [0, 1] to

K
(
x, yV

)
= 2cx, where K (x, y) = β1

4

[
αV1 (x, y)− αV0 (x, y)

] (
1 + µβ1

) (x+y
2

)β1−1
.

Solve for xR and yR: Substituting G (ξ) and F (ε) into (10), we have

Pr {R = 1|θ} =

[
w(1− y2)

1 + w

]β2
+

[
µθ(x+ y)

2

]β1 [(
1− wy2

1 + w

)β2
−
(
w(1− y2)

1 + w

)β2]
.
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Therefore, the expected payo� of the service provider can be derived as

Eπ = αR0 +
1

2

(
αR1 − αR0

){
2

[
w(1− y2)

1 + w

]β2
+
(

1 + µβ1
)(x+ y

2

)β1 [(
1− wy2

1 + w

)β2
−
(
w(1− y2)

1 + w

)β2]}
− cx2.

Based on the �rst order condition,
(
xR, yR

)
is the solution within [0, 1] to the two simultaneous

equations: ∂Eπ
∂x = 0 and ∂Eπ

∂y = 0, which can be derived as


1
4

(
αR1 − αR0

)
D1

[(
1− wy2

1+w

)β2
−
(
w(1−y2)
1+w

)β2]
= 2cx

2D3 + D1
2

[(
1− wy2

1+w

)β2
−
(
w(1−y2)
1+w

)β2]
+ (D2 −D3)

(
1 + µβ1

) (x+y
2

)β1
= 0,

whereD1 =
(
1 + µβ1

)
β1
(x+y

2

)β1−1
,D2 = β2

(
1− wy2

1+w

)β2−1 (−2wy
1+w

)
andD3 = β2

(
w(1−y2)
1+w

)β2−1 (−2wy
1+w

)
.

Compare xV to xR, and yV to yR: We numerically solve for xV and
(
xR, yR

)
under various

values of β1 and β2. We �nd that the general result that xR < xV and yR ≤ yV continues to hold.

Figure 8 illustrates a representative comparison result.
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Figure 8: Equilibrium Comparison (β1 = 0.85, β2 = 1.15, c = 0.15, w = 0.25)
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S2.3 Normal Distribution

In this section, we let ξ and ε follow normal distributions so as to extend the support from �nite to

in�nite and the distribution from uniform to another common family. Speci�cally, ξ ∼ N
(
κ1, τ

2
1

)
,

and ε ∼ N
(
κ2, τ

2
2

)
. Denote their cdf's and pdf's as G(ξ) (F (ε)) and g(ξ) (f(ε)), respectively.

Solve for xV and yV : Substituting inPr {V = 1|θ} = 1 − G (−µθ (x+ y)), we can write the

expected payo� of the service provider as

Eπ = αV0 +
1

2

(
αV1 − αV0

)
[2−G (−x− y)−G (−µ(x+ y))]− cx2.

Taking the �rst derivative with respect to x and y, we have

∂Eπ

∂x
=

1

2

(
αV1 − αV0

)
[g (−x− y) + µg (−µ(x+ y))]− 2cx

∂Eπ

∂y
=

1

2

(
αV1 − αV0

)
[g (−x− y) + µg (−µ(x+ y))]

Because ∂Eπ
∂y > 0 for any y, therefore, yV = 1. Meanwhile, xV is the solution within [0, 1] to

K
(
x, yV

)
= 2cx, where K (x, y) = 1

2

[
αV1 (x, y)− αV0 (x, y)

]
[g (−x− y) + µg (−µ(x+ y))].

Solve for xR and yR: Substituting in

Pr {R = 1|θ} = 1− F
(
wy2

)
+
[
F
(
wy2

)
− F

(
wy2 − 1

)]
[1−G (−µθ (x+ y))] ,

we can derive the expected payo� of the service provider as

Eπ = αR0 +
1

2

(
αR1 − αR0

) {
2− 2F

(
wy2 − 1

)
−
[
F
(
wy2

)
− F

(
wy2 − 1

)]
[G (−x− y) +G (−µ(x+ y))]

}
.

Based on the �rst order condition,
(
xR, yR

)
is the solution within [0, 1] to the two simultaneous

equations: ∂Eπ
∂x = 0 and ∂Eπ

∂y = 0, which can be derived as


1
2

(
αR1 − αR0

) [
F
(
wy2

)
− F

(
wy2 − 1

)]
D1 = 2cx

2D3 + (D2 −D3) [G (−x− y) +G (−µ(x+ y))]−
[
F
(
wy2

)
− F

(
wy2 − 1

)]
D1 = 0,
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where D1 = g (−x− y) + µg (−µ(x+ y)), D2 = f
(
wy2

)
2wy and D3 = f

(
wy2 − 1

)
2wy.

Compare xV to xR, and yV to yR: We numerically solve for xV and
(
xR, yR

)
under various

normal distributions of ξ and ε. We �nd that the general result that xR < xV and yR ≤ yV

continues to hold. Figure 9 illustrates a representative comparison result.
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Figure 9: Equilibrium Comparison (κ1 = κ2 = 0, τ1 = τ2 = 0.6, c = 0.15, w = 0.25)

S3 Results When c is Small

In the paper, we focus on the generic case in which the service provider's cost coe�cient c is not

too small. As we discuss in the paper, doing so allows us to focus on the nontrivial regions with

unique equilibria and to avoid the distraction of technical discussions. In this section, we complete

the picture and characterize the equilibrium solutions when c is very small. As we show, our main

results extend to the case of small c robustly.

We follow the baseline model and characterize the equilibrium results when c is very small. In

the case when the service outcome serves as a signal, we can solve the equilibrium e�ort in a closed

form and hence fully derive all possible equilibria under explicit conditions.

Proposition A.1. When the market observes the outcome V alone as a signal, for c ≤ 1
8 , the

equilibrium e�ort of the client is always yV = 1; as for the equilibrium e�ort of the provider, (i)

when 1−µ2
(3−µ)2 < c < 1

8 and µ > 1
3 , there are three equilibria: xV = 1,

c(3−µ)±
√
c2(3−µ)2−c(1−µ2)
2c(1+µ) ; (ii)
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when c = 1−µ2
(3−µ)2 and µ > 1

3 , there are two equilibria: xV = 1, 3−µ
2(1+µ) ; (iii) when c = 1

8 and µ > 1
3 ,

there are two equilibria: xV = 1, 2(1−µ)
1+µ ; (iv) otherwise, there is only one equilibrium: xV = 1.

Proof. Following the proof of Proposition 2, we have the �rst order derivative with respect to y

always be a positive constant. Therefore, yV = 1. Recall that the �rst derivative with respect to x

equals K (x)−C (x), where K (x) = 1+µ
4 4α

V
(
x, yV

)
= 1−µ

2[3−µ−(1+µ)x] and C (x) = 2cx. As we have

shown, K (0) > C (0) = 0. When c ≤ 1
8 , we have K (1) ≥ C (1), so ∂Eπ

∂x |x=1 = K(1) − C(1) ≥ 0.

As a result, the corner solution at the upper bound, xV = 1, is always an equilibrium solution. In

addition, when c > 1−µ2
(3−µ)2 , K(x) and C(x) intersect twice, i.e., K (x) = C (x) yields two solutions

c(3−µ)±
√
c2(3−µ)2−c(1−µ2)
2c(1+µ) . Note that 1−µ2

(3−µ)2 ≤
1
8 for all µ ∈ [0, 1] and the strict inequality holds

if µ 6= 1
3 . Also, given 1−µ2

(3−µ)2 < c < 1
8 ,

c(3−µ)+
√
c2(3−µ)2−c(1−µ2)
2c(1+µ) < 1 if and only if µ > 1

3 , and

c(3−µ)−
√
c2(3−µ)2−c(1−µ2)
2c(1+µ) > 1 if and only if µ < 1

3 . As a result, when 1−µ2
(3−µ)2 < c < 1

8 and µ > 1
3 ,

there are three equilibrium xV 's within [0, 1], xV = 1,
c(3−µ)±

√
c2(3−µ)2−c(1−µ2)
2c(1+µ) , which corresponds

to (i). When c = 1−µ2
(3−µ)2 , K(x) and C(x) intersect once at 3−µ

2(1+µ) . Notice that 3−µ
2(1+µ) < 1 if and

only if µ > 1
3 . Therefore, when c = 1−µ2

(3−µ)2 and µ > 1
3 , there are two equilibrium xV 's within

[0, 1], xV = 1, 3−µ
2(1+µ) , which corresponds to (ii). When 1−µ2

(3−µ)2 < c = 1
8 , K (x) = C (x) yields two

solutions: 1 and 2(1−µ)
1+µ . Notice that 2(1−µ)

1+µ < 1 if and only if µ > 1
3 . Therefore, when c = 1

8 and

µ > 1
3 , there are two equilibrium xV 's within [0, 1], xV = 1, 2(1−µ)

1+µ , which corresponds to (iii). In

all the other cases (i.e., c < 1−µ2
(3−µ)2 , or µ ≤

1
3 and c ≤ 1

8), there is only one equilibrium, xV = 1,

which corresponds to (iv).

When the review serves as a signal, the equilibrium e�ort does not have a closed form. As a result,

fully explicit conditions for di�erent equilibria are not available. Nevertheless, we can characterize

the equilibria in general and provide su�cient conditions under which multiple equilibria exist.

Proposition A.2. When the market observes the review R alone as a signal, for c ≤ 1
2M (1),

the equilibrium e�ort of the client is always yR = min
{

1+µ
8w , 1

}
; as for the equilibrium e�ort of the

provider, one, two, or three equilibria could exist, among which xR = 1 is always an equilibrium, and

the other possible equilibria must be the solution(s) to M (x) = 2cx within the range of x ∈ [0, 1].

In particular, when 1−µ2
(3−µ)2 < c < 1

2M(1) and µ > 1
3 , there are three equilibrium xR's. Here,

M (x) ≡ 1+µ
4(1+w)∆α

R
(
x, yR

)
.
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Proof. Following the proof of Proposition 2, we have the �rst order derivative with respect to y as

∂Eπ
∂y =

4αR(xR, yR)
4(1+w) (1 + µ− 8wy). It is thus easy to conclude that yR = min

{
1+µ
8w , 1

}
. Recall that

the �rst derivative with respect to x equals M (x)− C (x), where M (x) = 1+µ
4(1+w)∆α

R
(
x, yR

)
and

C (x) = 2cx. As we have shown, M (0) > C (0) = 0. When c ≤ 1
2M(1), we have M (1) ≥ C (1), so

∂Eπ
∂x |x=1 = M(1)−C(1) ≥ 0. As a result, the corner solution at the upper bound, xR = 1, is always

an equilibrium solution. In addition, because M (x) − C (x) = 0 simpli�es to a cubic equation of

x (with at most three real roots), and we have M (0) > C (0) and M (1) ≥ C (1), we can conclude

thatM (x) and C (x) intersect at most twice within [0, 1]. As a result, within the range of x ∈ [0, 1],

M (x) = C (x) may yield no solution (i.e., M (x) > C (x) for ∀x ∈ [0, 1]), one solution (i.e., M (x)

intersects C (x) at a point where M (x) is tangent to C (x)), or two solutions (i.e., M (x) intersects

C (x) twice). Consequently, including the corner solution xR = 1, there could exist one, two, or

three equilibrium xR's.

To derive a su�cient condition under which multiple equilibria exist, recall the results in Proposi-

tion A.1 that when 1−µ2
(3−µ)2 < c < 1

8 and µ > 1
3 , K (x) intersects C (x) twice within x ∈ (0, 1). Notice

that when w = 0, M (x|w = 0) = K (x). By the proof of Corollary 2, M (x) is decreasing in w.

Therefore, we have M (x) < K (x) for any w > 0. We know that M (0) > C (0), and M (1) > C (1)

when c < 1
2M(1)

(
≤ 1

8

)
. Therefore, we can conclude that when 1−µ2

(3−µ)2 < c < 1
2M(1) and µ > 1

3 ,

M (x) intersects C (x) twice within x ∈ (0, 1), yielding two solutions of xR. Consequently, including

the corner solution xR = 1, there are three equilibrium xR's under this condition.

Next, we compare the equilibrium e�ort under the two scenarios. Given the possible multiple

equilibria, we need a certain criterion to re�ne the equilibrium concept and eliminate those less

�reasonable� equilibria. We consider that among multiple possible equilibria, only the one that

yields the highest expected payo� for the service provider sustains. Under such a criterion, we are

able to narrow down to a single equilibrium for each scenario when c is small. The next proposition

shows that the equilibrium comparison results in the paper extend robustly to the case when c is

small.

Proposition A.3. The equilibrium e�ort levels of both the service provider and the client are lower

when the review is observed as a signal than when the outcome is observed as a signal. Speci�cally,

for c ≤ 1
8 , x

R ≤ xV , and yR ≤ yV with strict inequality when w > 1+µ
8 .
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Proof. Recall that yV = 1 and yR = min
{

1+µ
8w , 1

}
. Therefore, yR ≤ yV with strict inequality when

w > 1+µ
8 .

Next, we compare xR and xV . Following the same analysis as in (A.32), we can show that the ex

ante payo� for the service provider equals Pr (θ = H)− c (x∗)2. As a result, the equilibrium e�ort

x∗ that yields the highest expected payo� for the provider is the one that is the lowest in value.

In other words, under such a re�nement criterion, for c ≤ 1
8 , the equilibrium e�ort of the provider,

xR (xV ), is either the smaller solution to M (x) = 2cx (K (x) = 2cx) within (0, 1) (if two solutions

exist), the only solution to M (x) = 2cx (K (x) = 2cx) within (0, 1) (if only one solution exists), or

the upper bound 1 (if no such solution exists). Notice in particular that for 1
2M (1) < c ≤ 1

8 , we

have shown in the paper that there is a unique solution xR to M (x) = 2cx.

Recall that M (x|w = 0) = K (x), and M (x) is decreasing in w, whereas K (x) is independent

of w. We thus have M (x) < K (x) for any w > 0. For c ≤ 1
8 , if K (x) intersects 2cx within

(0, 1), then xV is the (smaller) solution to K (x) = 2cx, and therefore K
(
xV
)

= 2cxV . Because

M (0) > 2c · 0 and M
(
xV
)
< K

(
xV
)

= 2cxV , M (x) must intersect 2cx at x < xV . Consequently,

as the (smaller) solution to M (x) = 2cx, xR must be less than xV . On the other hand, if K (x)

does not intersect 2cx within (0, 1), then xV takes the upper bound 1. As a result, xR ≤ xV = 1.

Altogether, we can conclude that xR ≤ xV for c ≤ 1
8 .

S4 Results for Section 6.2

We follow the baseline model with the only di�erence that the client's e�ort y is now observed by

the market when the review R serves as a signal. As we discuss in the paper, we can derive the

perfect Bayesian equilibrium when R serves as a signal as follows.

Given any chosen y, the market forms its rational belief about the true type of the service

provider based on the observation of the realized value of R and the client's e�ort level y, while

rationally anticipating the equilibrium e�ort of the provider ẋR, such that

αR1 =
Pr (R = 1|θ = H) Pr (θ = H)

Pr (R = 1|θ = H) Pr (θ = H) + Pr (R = 1|θ = L) Pr (θ = L)

=
2w
(
1− y2

)
+
(
ẋR + y

)
4w (1− y2) + (1 + µ) (ẋR + y)

, (A.26)
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and

αR0 =
Pr (R = 0|θ = H) Pr (θ = H)

Pr (R = 0|θ = H) Pr (θ = H) + Pr (R = 0|θ = L) Pr (θ = L)

=
2 (1 + w)− 2w

(
1− y2

)
−
(
ẋR + y

)
4 (1 + w)− 4w (1− y2)− (1 + µ) (ẋR + y)

. (A.27)

On the other hand, rationally anticipating the market belief αR1 and αR0 , the service provider

chooses ẋR such that it maximizes her expected payo�

Eπ = Pr (θ = H)
[
Pr (R = 1|θ = H) · αR

1 + Pr (R = 0|θ = H) · αR
0

]
+ Pr (θ = L)

[
Pr (R = 1|θ = L) · αR

1 + Pr (R = 0|θ = L) · αR
0

]
− cx2

=
1

2

[
αR
0 + Pr (R = 1|θ = H)

(
αR
1 − αR

0

)]
+

1

2

[
αR
0 + Pr (R = 1|θ = L)

(
αR
1 − αR

0

)]
− cx2

= αR
0 + ∆αR

[
w

1 + w

(
1− y2

)
+

1

1 + w

1 + µ

4
(x+ y)

]
− cx2, (A.28)

where ∆αR = αR1 − αR0 . As a result,

ẋR (y) = arg max
x

αR0
(
ẋR, y

)
+ ∆αR

(
ẋR, y

) [ w

1 + w

(
1− y2

)
+

1

1 + w

1 + µ

4
(x+ y)

]
− cx2. (A.29)

The �rst derivative of (A.29) with respect to x yields (note that ẋR inside αR0 and αR1 is treated as

a constant here)

∂Eπ

∂x
= ∆αR

(
ẋR, y

) 1 + µ

4 (1 + w)
− 2cx = 0 (A.30)

Therefore, the equilibrium e�ort of the provider (given any chosen y), ẋR (y), is the solution

within [0, 1] to the equation

M
(
ẋR, y

)
= 2cẋR, (A.31)

where M
(
ẋR, y

)
= ∆αR

(
ẋR, y

) 1+µ
4(1+w) . As we can see, (A.31) follows the same form as previously.

As a result, the equilibrium e�ort levels ẋR and ẏR follow the same functional relationship as before,

and all the relevant properties proved in the baseline model (e.g., the existence and uniqueness of

the solution to (A.31)) continue to hold.

Anticipating the equilibrium ẋR (y), the service provider chooses y such that it maximizes her

expected payo� Eπ as in (A.28). Notice that when we substitute back the equilibrium e�ort ẋR (y),

because the market belief is rational, the provider's expected payo� simpli�es to a constant term
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minus her e�ort cost. Speci�cally, we have

Eπ = Pr (θ = H)
[
Pr (R = 1|θ = H) · αR1 + Pr (R = 0|θ = H) · αR0

]
+ Pr (θ = L)

[
Pr (R = 1|θ = L) · αR1 + Pr (R = 0|θ = L) · αR0

]
− cẋR (y)2

= [Pr (θ = H) Pr (R = 1|θ = H) + Pr (θ = L) Pr (R = 1|θ = L)]αR1

+ [Pr (θ = H) Pr (R = 0|θ = H) + Pr (θ = L) Pr (R = 0|θ = L)]αR0 − cẋR (y)2

= Pr (θ = H) Pr (R = 1|θ = H) + Pr (θ = H) Pr (R = 0|θ = H)− cẋR (y)2

= Pr (θ = H)− c · ẋR (y)2 . (A.32)

The third equality holds by substituting in the de�nition of αR1 and αR0 . As a result, the optimal y

is the one that minimizes ẋR (y), that is,

ẏR = arg min
y

ẋR (y) . (A.33)

Consequently, the equilibrium e�ort level of the provider herself equals ẋR
(
ẏR
)
.

Having deriving both ẋR and ẏR under the extended model, we can compare them with the

equilibrium e�ort levels when the outcome V serves as a signal, xV and yV , which remains the

same. We have the similar result as follows.

Proposition A.4. When the client's e�ort is observable to the market when the review serves as a

signal, ẋR < xV and ẏR ≤ yV .

Proof. By (A.33), because ẏR minimizes ẋR (y) over all possible y's, we have ẋR
(
ẏR
)
≤ ẋR

(
yR
)
.

Notice that ẋR
(
yR
)
is simply the equilibrium xR derived under the baseline model, and it is shown

that xR < xV . Therefore, ẋR
(
ẏR
)
< xV . Recall that yV ≡ 1, and ẏR ≤ 1. Therefore, we have

ẏR ≤ yV .

Next, we further extend the case when the client incorporates private information into the

review. We focus on the case of symmetric private signal with σH = γ and σL = 1− γ, γ ∈
[
1
2 , 1
]
.

We now consider that the client's e�ort y is observable to the market in this case.

Following similar reasoning, we can derive that the equilibrium e�ort of the provider ˙̃xR (y) is

the unique solution to M̃
(

˙̃xR, y
)

= 2c ˙̃xR, where M̃ (x, y) = ∆α̃R (x, y) γ+(1−γ)µ
4(1+w) , and ˙̃yR minimizes
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˙̃xR (y). In order to compare ˙̃xR and ˙̃yR with xV and yV as γ varies, we �rst prove a useful lemma.

Lemma A.6. ˙̃xR
(

˙̃yR
)
is increasing in γ.

Proof. First notice that d
dγ

˙̃xR
(

˙̃yR (γ) ; γ
)

= ∂
∂γ

˙̃xR
(

˙̃yR; γ
)
by Envelope Theorem. Because ˙̃xR

(
˙̃yR; γ

)
is de�ned by the implicit function F

(
˙̃xR, ˙̃yR; γ

)
≡ M̃

(
˙̃xR, ˙̃yR; γ

)
− 2c ˙̃xR = 0. Therefore,

∂

∂γ
˙̃xR
(

˙̃yR; γ
)

= −
∂F
∂γ

∂F
∂x

= −
∂
∂γ M̃

(
˙̃xR, ˙̃yR; γ

)
∂
∂xM̃

(
˙̃xR, ˙̃yR; γ

)
− 2c

We have shown in the proof of Lemma A.5 that ∂
∂γ M̃ (x, y; γ) > 0 for any x and y. Also, we know

that ∂
∂xM̃

(
˙̃xR, ˙̃yR; γ

)
< 2c (by the condition of the crossing of M̃ (x) and 2cx at ˙̃xR). Therefore,

∂
∂γ

˙̃xR
(

˙̃yR; γ
)
> 0, and hence d

dγ
˙̃xR > 0, that is, ˙̃xR

(
˙̃yR
)
is increasing in γ.

We then show a similar result regarding the relative magnitude of ˙̃xR and xV as γ changes in

the extended model.

Proposition A.5. There exists (c, w, µ) such that for a certain threshold γ̃ (c, w, µ), ˙̃xR < xV if

γ < γ̃; ˙̃xR > xV if γ > γ̃.

Proof. Following similar reasoning as in the proof of Proposition A.4, when γ = 1
2 ,

˙̃xR
(

˙̃yR; γ = 1
2

)
≤

x̃R
(
ỹR; γ = 1

2

)
. We have already shown in the paper that x̃R

(
ỹR; γ = 1

2

)
< xV . Therefore,

˙̃xR
(

˙̃yR; γ = 1
2

)
< xV . Next, we show that when γ = 1, there exists (c, w, µ) such that ˙̃xR

(
˙̃yR; γ = 1

)
>

xV .

Consider w = 1
4 . Recall that

M̃ (x, y; γ = 1) =
1

2 (4− x− y) + 4w (1 + y2)
. (A.34)

Notice that M̃ (x, y; γ = 1) is increasing in y when y < 1
4w . For w = 1

4 , M̃ (x, y; γ = 1) is in-

creasing in y for ∀y ∈ [0, 1]. Consequently, ˙̃xR (y) is increasing in y for all y. As a result,

˙̃yR = 0, which minimizes ˙̃xR (y). Therefore, ˙̃xR
(

˙̃yR
)

= 1

9c+
√
c(81c−4)

> 0. Recall that xV =

c(4−(1+µ)yV )−
√
c2(4−(1+µ)yV )2−c(1−µ2)
2c(1+µ) is decreasing in µ. When µ = 1, xV = 0 < ˙̃xR. Therefore,

there exists a cuto� µ̃ such that when µ > µ̃, xV < ˙̃xR
(

˙̃yR
)
.

Now that we have shown there exists (c, w, µ) such that ˙̃xR
(

˙̃yR; γ = 1
)
> xV , and ˙̃xR

(
˙̃yR; γ = 1

2

)
<
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xV always holds, given ˙̃xR
(

˙̃yR
)
is increasing in γ by Lemma A.6 and xV is independent of γ, we

arrive at the said conclusion.
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