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Abstract: In this paper, we set up a game-theoretic model to examine oligopolistic 
price competition, considering two features of online search: the existence of a com-
mon search ordering and shoppers who have nonpositive search cost. We find that in 
equilibrium firms set their prices probabilistically rather than deterministically, and 
different firms follow different price distributions. The equilibrium pricing pattern 
exhibits an interesting local-competition feature in which direct price competition 
occurs only between firms adjacent to each other. Further, we incorporate consum-
ers’ search strategies into the model so that both search order and stopping rules are 
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determined rationally by consumers. We show that similar patterns may continue to 
hold in the fully rational framework when consumers have higher inspection costs 
for inferior positions.

Key words and phrases: local competition, oligopolistic competition, online search, 
price dispersion, pricing.

The Internet has greatly improved the efficiency of sharing information. On the one 
hand, the Internet greatly reduces the physical cost of accessing product information; 
on the other hand, the rapidly developed e‑commerce applications, especially online 
sponsored advertising, brings merchants selling similar products together and facilitates 
consumers’ searching. Nevertheless, the prediction of “the law of one price” has not been 
realized in the Internet era. Price dispersion has been well documented and discussed 
in the information systems literature [5, 7, 17]. This work draws upon consumer online 
search behavior and studies the oligopolistic equilibrium pricing to offer a theoretical 
explanation of online price dispersion.

One classical view in economic theory attributes price dispersion to the heterogeneity 
in consumers’ search behavior [3, 18]. These works typically study price competition 
in traditional offline search markets, and their model settings may not fit the online 
search very well. Compared to the traditional offline search, two features are more 
salient in the online environment: first, because of considerable differences in the 
location or the visibility of business positions (e.g., the hyperlinks), there often exists 
a common ordering in consumer search. Second, consumers’ search costs are highly 
diversified; in particular, there exists a substantial portion of “shoppers” who have 
nonpositive search costs.

Differences in location and the way of presenting on a Web page, or different virtual 
positions in the hyperlinking network on the Internet, cause firms’ links to differ greatly 
in terms of their visibility or prominence level. For example, search engines commonly 
display a limited number of premium-sponsored links in a highlighted area with a large 
size and a bright color on the top of a search result page; they also display a list of 
regular-sponsored links in the right column of a Web page with no highlighting, among 
which the top positions are commonly believed to be superior to the lower positions. 
When display space is limited (e.g., on mobile devices), sometimes only one or two ads 
are displayed at a time, and users have to switch to another page to view additional ads. 
Because of human eye movement patterns and information-processing habits, consum-
ers usually pay different levels of attention to different positions. Experimental studies 
have shown that consumers pay more attention to content with colors and a large size 
[13], and compared to paper media, consumers are more likely to focus on ads near the 
heading of electronic lists [10]. Online statistics also show a significant decrease in traffic 
from the top-sponsored link downward and much fewer visits after the first page [2]. 
As a result, most consumers browse links following a common order: they inspect the 
most prominent positions first, and then some stop while others continue to inspect the 
less prominent ones. In fact, there are also examples in the physical world that resemble 
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such ordering: most consumers first look at shelf slots at the eye level in a supermarket 
[9] or first visit the storefronts near the main entrance of a shopping mall, and then some 
of them continue to the floor-level shelf slots or the corner storefronts.

In reality such a common ordering could simply be the direct result of human habits 
and not necessarily a strategic decision after sophisticated calculation;1 nevertheless, we 
can also explain such ordering in a fully rational framework. As we show, the ordered 
search can be derived as an equilibrium outcome originating from differences in the 
inspection costs for different positions. In particular, the inferior positions incur higher 
inspection costs than the superior ones. A higher inspection cost can be interpreted 
as the psychological resistance to overcoming the information-processing habits, or 
the extra effort in locating a less-prominent link or switching Web pages. Given such 
differences, consumers’ choice to follow a certain order is a rational search strategy 
in equilibrium.

The second feature of online search behavior owes to the convenience brought by the 
Internet, which reduces consumers’ search costs from driving to the store to making 
several clicks of the mouse. In addition, it has also been shown that some consumers 
derive hedonic utility from shopping online [6]. As a result, a few consumers actually 
have a nonpositive (zero or even negative) net search cost. We call them shoppers. 
However, not everyone shopping online has such time luxury. The convenience of 
electronic commerce attracts people with time constraints whose only goal is to find 
a product within the shortest amount of time. Thus, these consumers have positive 
search costs. They do not conduct an exhaustive search and stop searching at certain 
stages, usually after sampling only a few sites (e.g., [11] empirically shows that online 
customers tend to search very few sites on average).

To study the equilibrium pricing pattern, we set up a game-theoretic model captur-
ing the two features of the online search. We consider oligopolistic competition in 
which multiple firms compete for consumers in a product market. Firms are differ-
entiated in the prominence level of their positions, which are reflected in the ranks in 
consumers’ presumed search sequence. Consumers are differentiated in their search 
behavior. In particular, a few consumers have nonpositive search costs and conduct a 
thorough search. We eliminate heterogeneity among firms and consumers in all other 
dimensions except firms’ position and consumers’ search behavior to show that the 
driving forces of the equilibrium pricing pattern are the two distinctive features of 
the search behavior.

We find an interesting equilibrium pricing pattern when first taking consumers’ search 
strategies as exogenous. The equilibrium exhibits the feature of “local competition,” 
in which firms compete directly with their neighbors along consumers’ search order 
only. We show that in equilibrium all firms mix their prices over different supports. 
Overlaps occur only in the supports of two firms adjacent to each other. Hence, there is 
no direct competition between any two firms that are not next to each other. We further 
show that behind the local-competition feature lies a global mutual dependence across 
all firms. We then endogenize consumers’ search strategies so that consumers make 
fully rational decisions on their search order and stopping rules. We show that similar 
pricing patterns may continue to hold in equilibrium when consumers’ inspection costs 
for different positions are different.



114     Xu, Chen, and Whinston

The main contribution of this work to the economic theory on search and pricing lies 
in that we study the asymmetric mixed-strategy equilibrium pricing in oligopolistic 
competition. To the best of our knowledge, the local-competition pattern revealed in 
this study is absent in the previous literature. The investigation on endogenizing the 
consumer search enriches the studies that explore asymmetric equilibrium pricing 
with optimal search strategies.

Diamond [8] raises the famous paradox that when consumers have positive search 
costs, an endogenous search model leads to a trivial equilibrium in which all firms 
charge the monopoly price and consumers do not search. Varian [20] suggests that 
when there exist consumers who are “informed” of all firms’ prices, the equilibrium 
outcome may involve mixed-strategy pricing, which leads to price dispersion. Stahl 
[18] studies a random search model in which consumers randomly pick a firm to 
inspect and all firms are symmetric. That article considers the existence of a portion 
of “shoppers” who have zero search cost and derive a symmetric equilibrium pricing 
provided that all nonshoppers have the same search cost. Weitzman [22] formulates 
the optimal search strategies given firms’ (asymmetric) price distributions in a gen-
eral setting. Arbatskaya [1] is among the few who study ordered search and price 
competition. By considering cost distributions atomless at the zero point, that article 
focuses on the pure-strategy equilibrium. There are other studies that analyze mixed-
strategy equilibrium in duopolistic competition in different contexts. For example, 
Campbell et al. [4] consider the effect of shoppers in a symmetric duopolistic setting, 
and Narasimhan [14], Weber and Zheng [21], and Xu et al. [23] consider asymmetric 
duopolistic mixed strategies. In contrast to these works, we consider the existence of 
shoppers in the ordered search market, and explicitly derive asymmetric mixed-strategy 
equilibrium in oligopolistic price competition with both exogenous and endogenous 
consumer search.

The rest of the paper is organized as follows. Next, we start with a model in which 
consumers’ search behavior is exogenously given. The third section details the analysis 
and shows the main results. In the fourth section, we endogenize the consumer search 
such that consumers rationally decide what search order to follow and when to stop. 
We consider both cases of position-invariant and position-dependent inspection costs. 
We show that the local-competition pattern may arise in the fully rational framework 
when consumers have higher inspection costs for inferior positions. The paper con-
cludes with a discussion on managerial implications.

Model

There are n (≥ 2) firms selling homogeneous products and competing for consumers 
in a product market. These firms have the same marginal production cost, which is 
normalized to zero without loss of generality. A continuum of consumers with unit 
mass exists in the market. Each consumer has a unit demand of the product and real-
izes a unit utility from consuming the product. Therefore, consumers will buy the 
product only if its price does not exceed 1. Firms are identical except for their rank 
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in the search ordering, and consumers are identical except for their search behavior. 
By eliminating differentiation in all other dimensions, we are able to show that the 
distinctive features of consumers’ online search behavior alone could drive an inter-
esting price dispersion pattern.

Consumers obtain product information through an information portal with a list of 
hyperlinks directed to firms’ Web sites, where purchases can be made directly. Firms 
are placed in different positions in the list, which can be viewed as the outcome of a 
pregame competition, such as a bidding competition. Because all firms are identical 
ex ante, the location competition outcome is irrelevant for analyzing the price com-
petition. Any assignment of positions becomes identical after relabeling firms by their 
position rank. Therefore, we do not include the location competition in the model but 
start from after firms get placed at different positions. Different positions have dif-
ferent prominence levels, which can be strictly ordered. Without loss of generality, 
we call the most prominent position the first position, the second most prominent 
position the second position, and so on. For convenience, we call the firm at the ith 
position firm i (i = 1, ..., n).

We start with the case in which consumers’ search strategies are exogenously given, 
in a way reflecting the two unique features of online search patterns: first, there exists 
a common search ordering so that all consumers start searching from the first posi-
tion and may continue to the second, then the third, and so forth. Second, consumers’ 
search costs are highly diversified so that they may stop searching at different stages. 
In particular, there exists a certain portion of shoppers who have a nonpositive search 
cost and sample all positions before making the purchase decision. Specifically, we 
assume that after sampling the ith position, a portion of α

i
 (0 < α

i
 < 1) stop searching, 

while the other 1 – α
i
 continue to sample the next position. Therefore, the portion 

of consumers who visit the ith (i ≥ 2) position is P
j=1
i–1(1 – a

j 
). To simplify notation, 

we denote b
i
 = P

j=1
i–1(1 – a

j 
), and let β

1
 = 1 and α

0
 = 0. To rule out violent fluctuation 

in the attention-declining rates α
i
 s, we assume that a

i
 ≥ a

i+1
(1 – a

i 
) (1 ≤ i < n). This 

condition requires that the rate of decline in attention (i.e., α
i
 s) does not increase dra-

matically from one position to the next, which can be easily satisfied (e.g., the same 
rate of decline across positions (α

i
 = α

i+1
) satisfies this condition).2

The timing of the game is as follows. Firms at different positions price their products 
simultaneously. Consumers sample the position(s), learn the price(s), and make the 
purchase decision. For those who sample at least two positions, they purchase from 
the firm with the lowest price. When there is a tie in the lowest price, they randomly 
pick one of the firms, with equal probability. A brief summary of notation is presented 
in Appendix A.

Equilibrium with Exogenous Search

We first derive firms’ equilibrium pricing strategies and then analyze the pattern of 
equilibrium price dispersion. In deriving the equilibrium pricing, we notice that any 
static pricing is unstable due to the existence of shoppers.
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Lemma 1 (Lack of Pure-Strategy Equilibrium): There is no pure-strategy equi-
librium in the price competition.

Proof: We prove the above result by contradiction. Suppose there is a pure-strategy 
pricing equilibrium. If there is no tie in the lowest price, then it is profitable for 
the firm with the lowest price to deviate by increasing its price closer to but still 
lower than the second-lowest price. If there is a tie in the lowest price that is 
strictly positive, then any of the firms with the lowest price has profitable devia-
tion by slightly cutting the price. If there is a tie in the lowest price that is zero, 
then among all these firms with zero price, the one with the highest prominence 
level can achieve positive profit by slightly increasing its price. Therefore, pure-
strategy pricing cannot be an equilibrium. Q.E.D.

Because there exists a certain portion of consumers who sample all positions to look 
for the lowest price, a slight cut in price to offer the lowest can lead to a significant 
increase in market share by capturing this portion of consumers. As a result, compet-
ing firms tend to lower their prices relative to the rivals. However, once the price is 
pushed to a certain low level, the firm at a better position in terms of prominence can 
be better off by charging a higher price and exploiting those consumers who stop 
searching right there. Therefore, any pricing strategy in which firms statically charge 
one price cannot be stable. Clearly, the driving force here is the presence of shoppers 
and the locational asymmetry created by the search ordering.

We next examine the mixed-strategy pricing equilibrium. We use F
i 
(p), i = 1, ..., n, to 

describe firm i’s mixed strategy of pricing. Like regular cumulative distribution functions, 
F

i 
(p) measures the probability that firm i charges a price less than or equal to p.

Proposition 1 (Equilibrium Pricing and Local-Competition Pattern): The equi-
librium mixed strategy of pricing from position i is as follows:
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Proof: All proofs are presented in Appendix B, unless indicated otherwise.

We next use an example to illustrate the pattern of the equilibrium mixed-strategy 
pricing.

Example 1: Consider a case of four positions with the same declining rate. 
Specifically, n = 4 and α

1
 = α

2
 = α

3
 = 1/2. According to the recursive defini-

tion in Equation (3), k
3
 = α

3
 = 1/2, and we can then derive that k

2
 = 4/5 and, 

further, that k
1
 = 5/7. Thus, according to Equation (2), p\

1
 = 1, p\

2
 = k

1 
p\

1
 = 5/7, 

p\
3
 = k

2 
p\

2
 = 4/7, and p\

4
 = k

3 
p\

3
 = 2/7. Notice that by definition, the sequence of 

price support bounds {p\
i
}n

i=1
 is monotonically decreasing, so that p\

1
 > p\

2
 > p\

3
 > p\

4
. 

The pricing strategies of the four firms are as follows:
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Figure 1 illustrates the supports and distributions for the pricing strategies of the firms 
in these four positions. Figure 2 depicts the simulated results of the equilibrium in Ex-
ample 1 with each point representing an independent draw from the price distributions 
in Equation (4). Notice that the dotted square areas that the diagonal passes through in 
(a), (b), and (d) indicate the direct price competition between two adjacent firms.

In equilibrium, each firm achieves a constant expected payoff by charging any price 
within its price support. On the one hand, the constant payoff makes each firm willing 
to randomize price over its entire support. On the other hand, each firm randomizes its 
price in a way that gives its competitors a constant payoff within their price supports. 
Specifically, firm i ’s expected profit can be written as
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(5)

When firm i (2 ≤ i ≤ n – 2) charges a price within the lower half of its price support 
[p\

i+1
, p\

i 
), the firm captures all consumers who sample its site and stop searching there 

(i.e., a portion of α
i 
β

i 
). This is because its price is lower than firm (i – 1)’s price for 
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sure (recall that firm (i – 1)’s price support is [p\
i 
, p\

i–2 
]), which accounts for the first term 

of the right-hand side of the first equation in Equation (5). Firm i can capture those 
who continue to sample the (i + 1)th position and stop searching there (i.e., a portion 
of α

i+1
β

i+1
) only when its price is lower than firm (i + 1)’s price, which accounts for 

the second term. Naturally, firm i forgoes all those consumers who continue to sample 
the (i + 2)th position, since firm (i + 2)’s price support is [p \

i+3
, p\

i+1
] and its price is 

lower for sure. The second equation in Equation (5) is the expected profit when firm i 
prices within the upper half of its price support, which can be interpreted in a similar 
way. Substituting in the firms’ equilibrium pricing strategies and by simple algebra, 
we can show that by charging any price within its support, firm i achieves a constant 
expected profit a

i
b

i 
p\

i
.

The most interesting feature of the equilibrium pricing is the local-competition 
pattern; that is, firms compete directly with their neighbors only. There is no overlap 
between the price supports of any two firms more than one position apart and thus no 
direct price competition between firms “distant” from each other. The driving forces 
of such a pattern are the two features of consumers’ search behavior. Because of the 
existence of shoppers, firms do not statically charge one single price but have to mix 
their prices to compete for consumers. Nevertheless, such competition is localized 
because of the decrease in visits along the common search order. The firm at a lower 
position cannot be better off by entering a higher price range, because it would then 
lose its already quite limited customer base. The firm at a higher position will not 
undercut its price, because in doing so it would only entangle itself in a fiercer price 
competition against the lower-ranked firms, which would result in little gain in extra 

Figure 1. Price Supports and Cumulative Distributions for Different Positions



Oligopolistic pricing with online search     119

demand but significant loss in the profit from the captured demand. As a result, to 
compete locally is the equilibrium outcome.

Another interesting aspect of the local-competition pattern is that each firm’s equi-
librium pricing strategy only involves “local” information. According to Equation (1), 
firm i ’s price distribution F

i
 only contains consumer search parameters α

i–1
, α

i 
, and 

α
i+1

. Also, firm i ’s price support is determined by (the lower bound of) firm (i – 2)’s 
support and (the upper bound of) firm (i + 2)’s support; within its support, firm i ’s 
profit is determined only by firm (i + 1)’s and firm (i – 1)’s pricing strategies, accord-
ing to Equation (5). In this sense, although the formal equilibrium analysis needs to 
be based on the whole picture of the game, to formulate optimal pricing strategy in 
practice, decision makers can simply focus on the traffic information at the adjacent 

Figure 2. Simulation of the Equilibrium in Example 1 (10,000 Simulated Points)

(a) Simulated Prices at Positions 1 and 2 (b) Simulated Prices at Positions 2 and 3

(c) Simulated Prices at Positions 1, 2, and 3 (d) Simulated Prices at Positions 3 and 4
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positions and the pricing strategies of the neighboring firms (i.e., firms that are adjacent 
and one position apart).

It is worth noting that the local-competition pattern is the result of global consider-
ation. Although no direct price competition is explicitly observed in equilibrium, even 
firms distantly above or below have an impact on a particular firm’s pricing strategies. 
In fact, although firm i + k (i – k) does not compete directly with firm i, it affects firm i ’s 
pricing through a chain effect, from firm i + k – 1 (i – k + 1) through firm i + 1 (i – 1). 
To see this, reconsider Example 1. When the fourth firm is eliminated, for example, 
although the first two firms still have the same neighbors as before, the price support 
of the first firm shifts toward the right from [5/7, 1] to [4/5, 1], and the second firm’s 
support shifts to the left from [4/7, 1] to [2/5, 1]. In fact, when the competitor from 
below disappears, the third firm tends to increase its price (and shifts its price support 
from [2/7, 5/7] to [2/5, 4/5]). In response, the second firm lowers its price support to 
capture more demand. Meanwhile, the more intense competition between the second 
and the third firms drives away the first firm’s interest, which leads to the increase 
of the lower bound of its price support. As we can see, behind the local-competition 
phenomenon actually lies the global mutual dependence among all firms.

Several other features of equilibrium pricing are also worth noting. First, except for 
the first one, all firms’ equilibrium pricing strategies are atomless within their entire 
supports, including the upper and lower bounds. This is because a mass point in one 
firm’s price distribution would result in a downward jump of another firm’s expected 
demand at that point and, consequently, lower profit levels in a contiguous region right 
to that point. For this reason, the only possible place where a mass point may occur is 
the common upper bound of the first two firms’ price supports p \

1
: although the mass 

point in F
1
(·) causes a downward jump in firm 2’s expected profit at p = p\

1
, firm 2’s 

actual expected profit is not affected because F
2
(·) places a nonpositive probability 

measure on that particular point. This feature under our oligopolistic model is in line 
with the results derived from duopolistic competition in other settings [12].

The kinks in firms’ pricing distributions can be explained by the localized com-
petition. The pricing distributions in the first and second parts of the support for 
firm i (2 ≤ i ≤ n – 1) are determined by the competition against its direct neighbors, 
firms i – 1 and i + 1, respectively. As the competition against the firm above and the 
firm below are generally different, naturally a kink arises in firm i ’s pricing distribu-
tion at p\

i 
. The shape of pricing distributions for the first and last firms is distinctive 

from the rest because those two firms have one direct neighbor only.
The next corollary reveals the monotonic decrease of the expected profit of firms 

at different positions, which explains why the top position of a sponsored list in 
online search advertising is usually the most popular and engenders fierce bidding 
competition.

Corollary 1 (Decrease of Expected Profits): The firms’ equilibrium expected 
profits decrease monotonically from the first toward the last; that is, π

i
 > π

i+1 
, 

i = 1, ..., n – 1.

Proof: Note that p
i
 = a

i 
b

i
 p\

i 
. Because p\

i
 > p\

i+1
 and a

i
 ≥ a

i+1 
(1 – a

i 
), p

i
 > p

i+1 
. 

Q.E.D.
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Corollary 1 shows that location advantage is rewarding in the sense that the firm in 
the advantageous location earns a higher profit. It is worth pointing out that the profit 
difference between a higher-ranked position and a lower-ranked one should dissipate 
in the pregame location competition if all firms are ex ante identical. That is, a firm 
has to pay a higher price for a superior position, which counterbalances its profit ad-
vantage. There is a rich literature on the competition for better locations or exposure, 
from the classical advertising literature [16] to the recent work on online advertising 
and position auctions [21].

The next corollary indicates that the equilibrium pricing under the ordered search with 
shoppers exhibits two levels of dispersion: not only are the realized prices at different 
positions different, but the expected prices are also different across positions.

Corollary 2 (Decrease of Expected Prices): The expected price decreases mono-
tonically from the first position toward the last one; that is, E(p

i 
)  >  E(p

i+1 
), 

i = 1, ..., n – 1.

Notice that firms adjacent to each other adopt similar pricing strategies over the 
overlapped interval of their supports. In fact, according to Equation (4), the conditional 
probability density functions of their pricing strategies over the overlapped interval are 
the same, which implies the same conditional expectations; that is, E(p

i 
| p ∈ [p\

i+1
, p\

i
]) = 

E(p
i+1 

| p ∈ [p\
i+1

, p\
i 
]). Because firm i prices within the upper half of its price support 

[p\
i
, p\

i–1
] with positive probability and firm i + 1 prices within the lower half of the 

support [p\
i+2

, p\
i+1

] with positive probability, the unconditional expectation of firm i ’s 
price is strictly higher than that of firm (i + 1).

Corollary 2 shows that the equilibrium price expectation decreases monotonically 
along the direction of consumers’ search ordering. As a result, search is rewarding in 
the sense that those who keep searching are more likely to find a lower price.

Equilibrium with Endogenous Search

In the previous analysis, we take consumers’ search behavior, including the search 
order and stopping rules, as exogenously given. In this section, we extend the analysis 
to endogenize consumers’ search strategies. The focus is to explore whether and under 
what conditions a similar equilibrium pricing pattern continues to arise in the fully 
rational framework. As we show, the inherent difference among positions is necessary 
for the local-competition pattern to arise in equilibrium pricing. When consumers 
are free to sample any position with no particular ordering constraint and inspect-
ing different positions incurs the same cost, such a pattern disappears. The pattern 
arises only if the more prominent position incurs a lower sampling cost than the less 
prominent position, which reflects the underlying distinction between ordered search 
and random search. In this case, we further show that under certain parametric condi-
tions, equilibrium pricing with the same local-competition pattern can be derived in 
the fully rational framework.

We now consider consumers as active players in the game. We assume that all con-
sumers are fully rational and decide their search order and stopping rules strategically. 
We consider the rational-expectations equilibrium (REE), in which consumers’ search 
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strategies are rational given firms’ pricing strategies and firms have no profitable de-
viation in pricing given consumers’ search strategies. For shoppers with zero search 
cost, it is always optimal for them to sample all positions before making a purchase 
decision. For nonshoppers, we consider a sequential search process: the consumer 
inspects one position and learns the price, and then he or she decides whether to con-
tinue searching or to stop and, if to continue, which position to inspect next. In other 
words, an individual consumer’s search strategy consists of a sequence of decisions; 
each decision d(z, C) can be to stop, to inspect a position, or to randomly inspect several 
positions with a probability distribution; d(z, C) depends on the lowest price z from 
all the inspected positions, and the choice set C, which contains all the uninspected 
positions. To determine d(z, C), the consumer needs to calculate the net expected gain 
from all possibilities for the next step. The net expected gain from inspecting the ith 
position, given the lowest sampled price z and the choice set C, EG(i; z, C), equals the 
expected decrease in purchase price plus the net expected gain from another rational 
search afterward, minus the inspection cost. Notice that when no position has been 
inspected yet, we let z = 1, and we thus only need to consider z ≤ 1 throughout the 
rest of the paper. Formally, for an individual consumer with positive inspection costs 
k

i 
, given firms’ pricing strategies F

i 
, similar to the formation in Weitzman [22], the 

net expected gain can be formulated recursively as

	
EG i z C z p dF p k EG z p C i dF pi i ip

p

p

z
; , min , , \ ,*( ) = −( ) ( ) − + { } { }( ) ( )∫∫

	
(6)

where

EG z C EG j z C
j C

* , max ; , , .( ) = ( ){ }
∈

0

To determine the rational search decision is to compare the net expected gain of all 
the options in the choice set. If further search yields no positive net expected gain, 
stopping is the rational decision and EG * = 0. Otherwise, the rational search decision 
is to continue to inspect the position that generates the highest net expected gain. In 
the case of a tie, randomly inspecting any of them is rational. We next use an example 
to illustrate consumers’ rational search strategy.

Example 2: Consider two firms. Firm 1 sets its price equal to 1 or 0 with equal 
probability. Firm 2 prices uniformly over [0, 1/2]. Consumers’ inspection costs 
are the same for both firms, and let k

1
 = k

2
 = 1/8. The rational search strategy 

in this case is to inspect the first firm at first: if the quoted price is zero, stop 
searching; otherwise, continue to inspect the second firm.

In this example, the expected price of the first firm (1/2) is higher than the expected 
price of the second firm (1/4). This example shows that it may not be rational to start 
searching from the position with a lower expected price even if the inspection costs 
are the same. In fact, consumers’ rational search strategies generally depend on the 
full distributions of equilibrium prices, which in turn are determined by consumers’ 
rational search strategies. Such interdependence makes the analysis complex, especially 
when we consider asymmetric oligopolistic competition and heterogeneous consumer 
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search costs. For this reason, equilibrium analysis of oligopolistic pricing with rational 
search generally results in no closed-form solution. In this section, we seek to derive 
explicit equilibrium under certain conditions.

We consider the simplest oligopolistic case of three firms. The three firms are located 
in three different positions. Again, we refer to the firm located in the ith position as 
the ith firm or firm i, i ∈ {1, 2, 3}. Consumers are different in their search costs. To 
be consistent with the previous settings, we assume that among all consumers with 
total mass 1, α

1
 of them have the highest search costs and are referred to as type 1 

consumers; α
2
(1 – α

1
) of them have lower search costs and are referred to as type 2 

consumers; the rest (1 – α
1
)(1 – α

2
) are shoppers. For the sake of simplicity, we let 

α
1
 = α

2
 = α (0 < α < 1). Assume type 1 consumers incur a cost k

i
 to inspect the ith 

position, while type 2 consumers incur a cost k
i
′, i ∈ {1, 2, 3}, 0 ≤ k

i
′ ≤ k

i
 ≤ 1. All other 

settings follow the previous model setup.
We first study the case in which consumers’ inspection costs are position-invariant; 

that is, k
1
 = k

2
 = k

3
 and k

1
′ = k

2
′ = k

3
′. In this case, there is essentially no difference 

among positions, and firms thus are symmetric. We derive symmetric equilibrium 
under certain conditions and uncover an interesting equilibrium pricing pattern that 
involves segmentation of price supports. We also show that the local-competition 
pattern from the previous analysis does not hold in the case of position-invariant in-
spection costs. We then allow inspection costs to vary across different positions and 
give a necessary condition and a sufficient condition for the local-competition pattern 
to arise in equilibrium.

Position-Invariant Costs

In this subsection, we consider the case that the inspection costs are the same for all 
positions. We let k

1
 = k

2
 = k

3
 ≡ k and k

1
′ = k

2
′ = k

3
′ ≡ k ′, and we assume 0 < k ′ < k < 1. 

Because we now do not impose any ordering constraint, when there is no difference in 
the inspection cost for different positions, all positions, and thus all firms, are essentially 
the same. Naturally, this case reduces to the symmetric random search setting. When 
nonshoppers have the same search cost, the symmetric equilibrium price distribution 
can be explicitly derived and analyzed [18]. When nonshoppers have heterogeneous 
search costs, like in our setting, the equilibrium analysis is more complicated because 
nonshoppers may adopt different search strategies, which in turn complicates firms’ 
pricing decisions. Stahl [19] shows that with continuous cost distribution, a symmetric 
mixed-strategy equilibrium always exists, although the actual distribution patterns 
depend on the cost distribution and generally have no closed-form solutions. To bet-
ter contrast with the local-competition pattern from the previous analysis, we next 
explicitly derive the symmetric equilibrium under certain conditions.

In the symmetric case, because firms adopt the same pricing strategies in a symmetric 
equilibrium, the search order becomes trivial: in each step, the rational strategy is either 
to stop or to randomly pick one of the uninspected firms. In other words, the search 
strategies simply reduce to the stopping rules. In addition, to determine the stopping 
rules, the expected gain in Equation (6) is easier to calculate. As we can show, when 
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firms adopt the same pricing strategy, the optimal stopping decision based on the 
expected gain from all the future searches is exactly the same as the decision based 
simply on the expected gain from the next one search. Therefore, in the symmetric 
equilibrium where each firm prices according to F(·), consumers’ search strategies 
(with search cost k) can be characterized by an optimal stopping price r*, which is 
determined by

	
r p dF p k

p

r * .
*

−( ) ( ) − =∫ 0
	

(7)

When the current lowest price exceeds r*, it is worthwhile to conduct an additional 
search; otherwise, it is optimal to stop. Thus, in the following symmetric equilibria, 
we consider consumers’ rational search strategies as follows: shoppers always inspect 
all positions before making a purchase, and nonshoppers randomly inspect one firm 
with equal probability. If the price does not exceed their optimal stopping price (de-
note as r

1
* for type 1 consumers and r

2
* for type 2 consumers), they stop searching and 

purchase the product. Otherwise, they continue to randomly inspect one of the firms 
left with equal probability, until the price is no greater than their optimal stopping 
price or there is no firm left to inspect. They then buy from the one with the lowest 
price. Therefore, a complete description of the symmetric equilibrium only needs to 
specify firms’ common pricing strategy (represented by the cumulative distribution 
function F ) and nonshoppers’ optimal stopping prices (r

1
* and r

2
*).

Proposition 2 (Symmetric Pricing with Continuous Support): There exists a mixed-
strategy equilibrium in which all firms price according to the distribution

	

F p
p p

p
p p p( ) = −

− −( )



 −( )

−( )
∈[ ]1

1 1

3 1

2
1

2 2 1

α

α
, ,

	

(8)

where p\
1
 = r

2
* and 

	

p r2

2

2 2

1 1

1 2 1
=

− −( )
+ −( )

α

α
*,

and the optimal stopping prices r
1
* = r

2
* + k – k ′ and r

2
* are determined by 

	
F p dp k

p

p ( ) = ′∫ ,
2

1

if the inspection costs k and k ′ are not too different such that 0 <r
2
* <r

1
* < 1 and 

r
2
* > (1 / (2 – a))r

1
*.

The next example illustrates the equilibrium described in Proposition 2.

Example 3: When α = 0.3, k = 0.3, and k ′ = 0.2, we can calculate nonshoppers’ 
optimal stopping prices r

1
* = 0.62 and r

2
* = 0.52 (r

2
* > (1 / (2 – a))r

1
*) and firms’ 
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price support bounds p\
1
 = 0.52 and p\

2
 = 0.13. The price distribution is depicted 

in Figure 3a.

When the search cost of the type 1 consumers is not too high relative to that of the 
type 2 consumers, firms set the upper bound of the price support equal to the optimal 
stopping price of the type 2 consumer so that all nonshoppers stop searching after 
sampling once. In this case, the firms forgo the option of charging a higher price to 
take advantage of the high-cost type 1 consumers because the benefit from exploiting 
the high-cost consumers cannot counterbalance the loss of business from the low-cost 
consumers.

Proposition 3 (Symmetric Pricing with Segmented Support): There exists a mixed-
strategy equilibrium in which all firms price according to the distribution

	

F p

p p p

p
p p p

p p
( ) =

−
− − −( ) + +( )

−( )
∈ 

−
−( )

1
1 1

3 1

1
3

1
2

2 4 3

1

α α α α φ φ

α

α

,

11 2 1−( ) ∈[ ]












 α p

p p p, ,

	

(9)

where 

Figure 3. Examples of Price Distributions in the Symmetric Equilibrium

(a) F(p) in Example 3

(b) F(p) in Example 4
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and the optimal stopping prices r
1
* and r

2
* are determined by
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if the inspection costs k and k ′ are different enough such that 0 < r
2
* < r

1
* < 1 

and

	

α
α α3 2

1

21 2 1−
< <

−
r r r* * *.

The next example illustrates the equilibrium described in Proposition 3.

Example 4: When α = 0.3, k = 0.5, and k′ = 0.1, we can calculate nonshop-
pers’ optimal stopping prices r

1
* = 0.88 and r

2
* = 0.37 ([a/(3 – 2a)]r

1
* < r

2
* < 

[1 / (2 – a)]r
1
*) and firms’ price support p\

1
 = 0.88, p\

2
 = 0.56, p\

3
 = 0.37, and 

p\
4
 = 0.13. Also, f = 0.29. The price distribution is depicted in Figure 3b.

Intuitively, when the search cost of the type 1 consumers is significantly higher than 
that of type 2 consumers, the optimal stopping price of the type 1 consumers is thus 
considerably higher than that of the type 2 consumers. As a result, charging a higher 
price to exploit the high-cost consumers could be as profitable as charging a lower 
price to compete for more market share, which explains the rightward expansion of 
the price support compared to the previous result. Particularly, it is worth noting that 
segmentation of price supports arises in equilibrium in this case. The gap between p\

3
 

and p\
2
 results from the drop of expected demand for prices right above p\

3
. Because p\

3
 

equals the type 2 consumers’ optimal stopping price r
2
*, when pricing below p\

3
, a firm 

can stop all type 2 consumers who inspect its position from further searching. However, 
once its price exceeds p\

3
, the type 2 consumers will continue to inspect other positions 

and are very likely to purchase from elsewhere (unless all the other positions charge 
even higher prices). Therefore, the expected demand drops substantially at p\

3
. As a 
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result, the expected profit jumps downward at p\
3
 and does not rise back until p ≥ p\

2
. 

For this reason, charging any price between p\
3
 and p\

2
 is suboptimal.

One question of our particular interest is: could the local-competition price pattern 
arise in equilibrium in the case of position-invariant costs? The answer is negative, as 
we show in Proposition 4. In fact, we can conclude that the typical symmetric random 
search market cannot induce the local-competition equilibrium pricing pattern.

Position-Dependent Costs

We now allow consumers’ inspection costs to be different for different positions. 
Position-dependent inspection costs reflect the inherent difference across different 
positions, which lies in the difference in terms of visibility and accessibility. Just like 
bending over to check the bottom-level shelf space in the supermarket could be costly 
for seniors, scrolling down and looking for an unhighlighted link on a Web page or 
switching multiple Web pages could be troublesome for non-tech-savvy users or in 
the case of unsatisfactory network connection.

We first give a necessary condition for the local-competition pattern to arise in 
equilibrium:

Proposition 4 (Local-Competition Pattern Under Endogenous Search: A Necessary 
Condition): A similar pricing pattern as in Equation (1) may arise in a rational-
expectations equilibrium only if at least one group of consumers have a higher 
inspection cost for position 3 than for position 1 (i.e., k

3
 > k

1
 or k

3
′ > k

1
′).

Proposition 4 shows that for the pattern to appear in REE, at least some consumers’ 
inspection cost for the third position should be strictly higher than that for the first 
position. Otherwise, because the price at the first position is always higher than that at 
the third position, as in Equation (1), inspecting the first position would be dominated 
by inspecting the third one for all consumers. In this case, the rational search decision 
would be to inspect the second and the third positions only. If this is the case, then 
both the first and the second firms will deviate from the presumed pricing strategies. 
As a result, the pattern in Equation (1) cannot hold as an equilibrium.

Proposition 4 thus excludes the possibility that the local-competition pattern is an 
equilibrium when there is no inherent difference among different positions. It reveals 
the fact that the special pattern of equilibrium price dispersion is an outcome of posi-
tion-dependent inspection costs, which induce certain search ordering of consumers 
as rational equilibrium behaviors.

We next explicitly derive an equilibrium with the same pricing pattern as Equa-
tion (1) under certain conditions:

Proposition 5 (Local-Competition Pattern Under Endogenous Search: A Sufficient 
Condition): When nonshoppers’ inspection costs for different positions increase 
with position ranks and the differences are large enough, precisely when 
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there exists a rational-expectations equilibrium in which firms price accord-
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p\
3
 = a p\

2
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consumers adopt the search strategies specified in Table 1.3
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The conditions needed are that the inspection costs are higher for the inferior po-
sitions than those of the superior ones and that they differ in the same order for all 
nonshoppers (i.e., k

1
 < k

2
 < k

3
 and k

1
′ < k

2
′ < k

3
′). In addition, the differences between 

the inspection costs for two different positions are heterogeneous across consumers. 
In other words, while some consumers (i.e., shoppers) are insensitive to location dif-
ference, others (i.e., nonshoppers) are quite sensitive, and these nonshoppers have 
different levels of tolerance toward locational inconvenience. For example, some 
consumers might not mind scrolling down and looking for an unhighlighted link on 
the same Web page but would not bother to switch to another Web page to continue 
their search, or it might be fine for some to bend over and check the bottom shelf in 
the supermarket but it would be too troublesome to get a ladder and check the top 
shelf. As an equilibrium outcome of such differences, a commonly observed search 
order arises in equilibrium, and meanwhile different consumers stop at different stages 
of the search process.

Anticipating consumers’ rational search strategies, firms also optimize their pricing 
strategies by selectively retaining some consumers from further search, competing 
for some who sample multiple positions and forgoing the others. As an equilibrium 
outcome, type 1 consumers choose to start their search from the first position because 
it yields the highest expected gain according to Equation (6). After learning the price 
from the first position, they decide to stop searching because further inspection of 
either the second or the third position yields a negative expected gain. Similarly, type 2 
consumers stop searching after inspecting the first two positions because of the higher 

Table 1. Consumers’ Search Decisions d (z, C) 

Choice set C Type 1 consumers Type 2 consumers

{1,2,3} If z = 1, inspect first position If z = 1, inspect first position
{2,3} If (1 ≥) z > p\

1, inspect second  
  position;
  If z ≤ p\

1, stop

If z > r2, inspect second position;
  If z ≤ r2, stop

{1,3} If z > r1, inspect first position;
  If z ≤ r1, stop

If z > p\
2, inspect first position

{1,2} If z ≤ p\
2, stop If z > p\

2, inspect first position
{1} If z ≤ r1, stop If z > p\

2, inspect first position
{2} If z ≤ p\

1, stop If z > r2, inspect second position;
  If z ≤ r2, stop

{3} If z ≤ p\
1, stop If z ≤ p\

1, stop

r
1
 is defined by 

r p dF p k  p r p
p

r
1 1 1 2 1 1

2

1 −( ) ( ) = < <∫ . ( .)Notice that 

r
2
 is defined by 

r p dF p k  p r p
p

r
2 2 2 3 2 2

3

2 −( ) ( ) = ′ < <∫ . ( .)Notice that 
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search cost for the third position. Shoppers inspect all three positions before making 
a purchase, and the order they pursue actually does not matter.

Table 1 lists nonshoppers’ search decisions d(z, C) when facing values of {z, C} that 
are relevant to the equilibrium analysis. From the table, we can identify nonshoppers’ 
equilibrium search strategies. For instance, the lowest price is z = 1 before consumers 
start the first search, and the decision facing consumers is d (1,{1, 2, 3}). For type 1 
consumers, according to Table 1, d (1, {1, 2, 3}) is to inspect the first position. After that, 
they learn a price p from the F

1
(p) so that p ∈ [p\

2
, p\

1
]. Then the decision d (p, {2, 3}) 

for the type 1 consumers is to stop, which completes the type 1 consumers’ search 
strategies in equilibrium. We also specify consumers’ off-equilibrium strategies. For 
instance, the type 1 consumers will not actually face the decision d (z, {1, 3}). Neverthe-
less, this decision and the associated payoff should be taken into account when they 
calculate the expected gain of inspecting the second position in the first place. Also, 
the type 2 consumers face the decision d (z, {2, 3}) after inspecting the first position. 
Despite the fact that the price quoted from the first position always falls in [p\

2
, p\

1
] in 

equilibrium, we also need to specify the off-equilibrium search decision when z < p\
2
 

because such decision affects the first firm’s profitability of possible deviation. As we 
can verify, all the decisions listed in Table 1, both in-equilibrium and off-equilibrium, 
are rational.

Conclusion

In addition to the theoretical contribution to the literature on search and pricing, 
this paper has managerial implications for sellers, consumers, and information systems 
designers. For sellers seeking the optimal pricing strategy, we emphasize the importance 
of recognizing the features of consumers’ online search behavior and adjusting the 
price accordingly. Because the online environment makes it relatively easy to sample 
around, a competitive price could quickly be noticed and result in a surge of sales. 
Therefore, it would be beneficial to provide occasional promotions or limited-time deals 
from time to time, which could not only boost short-term sales but also attract more 
visits in the long run. Nevertheless, the optimal pricing strategies would avoid being 
too aggressive or too conservative in price competition. The local-competition pattern 
suggests competing only against commensurable opponents with similar visibility. In 
most cases, it would be suboptimal to compete against sellers that are much stronger 
or weaker. Moreover, to form their optimal pricing strategies, sellers only need “local” 
information on consumers’ search behavior at the positions with similar visibility and 
on the pricing strategies of the firms at these neighboring positions.

For consumers looking for the best deals, it might sound discouraging that the exact 
price at a particular position is usually difficult to predict. It could be the case that the 
firm at a prominent position offers a good deal, or a firm at an inferior position might 
not charge as low a price as expected. Stopping the search process early is thus rational 
for consumers who have high search costs. Nevertheless, since the price expectation 
decreases as the location prominence drops, it is generally rewarding to keep search-
ing, especially for those who are not sensitive to locational inconvenience.
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For designers of online information portals, this study highlights the critical role of 
the inherent difference among business positions in affecting consumers’ inspection 
costs, which then determine the search behavior and, in turn, sellers’ profits. Appro-
priately differentiating the visibility of links (e.g., by special decoration, large display 
areas, or color highlighting) is essential to make the superior positions more appealing 
to sellers. In addition, notice that the advantage of prominent positions would diminish 
once consumers get fully accustomed to the Web page design and linking structure. In 
this sense, occasionally updating the structural design would also be necessary.

This work can be extended in several directions. The major limitation of the analysis 
in the fourth section is that it is somewhat incomplete, as we only study the equilibrium 
with full rationality in the three-firm case under certain conditions. A future extension 
would be to explore the general case of asymmetric oligopolistic pricing with optimal 
consumer search. Another interesting direction for future work would be to consider 
a dynamic setting in which consumers arrive at different times, and firms compete 
against each other intertemporally. In addition, the local-competition pattern predicted 
from the current study could be an interesting topic for future empirical investigation 
of online price dispersion.
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Notes

1. Peterson and Merino [15] argue that in reality consumers search in a way different from 
the rational assumptions in economic theory, and this situation continues in the online world.

2. When the condition does not hold, which implies that a lower position retains a larger 
portion of the visitors than an upper one, the firm at the upper position may deviate to a lower 
price range.

3. Alternatively, we can describe consumers’ search strategies based on Pandora’s rule, 
which relies on a major result from Weitzman [22]. Here, we opt to formulate and solve the 
whole problem within a self-contained framework.

4. The only exception is that there will be a downward jump in expected profit at the upper 
bound p\

1
 for the firm in position 2, which is incurred by the mass point in F

1
(·) at p\

1
. However, a 

jump down at one single point with zero probability measure does not affect the actual profit.
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Appendix A: Summary of Notation

Notation Definition Comments

α i Among the consumers inspecting  
  position i, the portion who stop  
  searching thereafter

α0 = 0, 0 < α i < 1  
  (i = 1,…,n – 1)

β i The total number of consumers  
  who inspect position i

b1 = 1, b i = Pj=1
i–1(1 – aj )  

  (i = 2, ..., n)
Fi (p) The probability that firm i charges  

  a price less than or equal to p 
The cumulative distribution  
  function of firm i ’s pricing

p\
1, ..., p\

n
The bounds of firms’ price  
  supports 

p\
n < ...< p\

1

πi Firm i ’s expected profit  
z The lowest price from all the  

  inspected positions 
When no position has been  
  inspected yet, z = 1

C The choice set containing all the  
  uninspected positions 

 

d (z, C) The search decision when the  
  lowest inspected price is z and  
  the choice set is C 

Each decision is to stop, to  
  inspect a particular position,  
  or to randomly inspect several  
  positions with a probability  
  distribution

EG (i ; z, C ) The expected gain from  
  inspecting position i when the  
  lowest inspected price is z and  
  the choice set is C 

 

k1, k2, k3 The inspection costs of the  
  type 1 (or the high-cost)  
  consumers for positions 1, 2,  
  and 3 

When k1 = k2 = k3, we suppress  
  the subscript and denote them  
  as k

k ′1, k ′2, k ′3 The inspection costs of the  
  type 2 (or the low-cost)  
  consumers for positions 1, 2,  
  and 3 

When k ′1 = k ′2 = k ′3, we suppress  
  the subscript and denote them  
  as k ′

r * Consumers’ optimal stopping  
  price 

When the quoted price exceeds  
  r *, consumers continue  
  searching; otherwise,  
  consumers stop searching
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Appendix B

Proof of Proposition 1

Denote F
i
(p) as F

i
–(p) for p ∈ [p\

i+1
, p\

i 
) and as F

i
+(p) for p ∈ [p\

i 
, p\

i–1
].

(1) First, F
i 
(·), i = 1, ..., n, is a well-defined cumulative distribution function. Notice 

that all supports are well defined because 0 < k
i
 < 1, i = 1, ..., n – 1, and thus {p\

i
}n

i=1
 is 

positive and monotonically decreasing.
Each F

i
–(·) or F

i
+(·) is strictly increasing within its support, and F

i
–(p\

i 
) = F

i
+(p\

i 
) 

because

	

1
1

1
1

1

1 1

1 1

1

− ( ) = = =
−( ) −







=
−

− + −

− −

−

F p
p

p
k

ki i
i

i
i

i

i i i

i

i i

α
α α

α
α α −−

− +

( )
−( )

= − ( )
1

1 1
p p

p
F pi i

i
i i .

Therefore, each F
i 
(·) is strictly increasing in its entire support. Because F

i
(p\

i+1
) = 0 

and F
i 
(p\

i–1
) = 1, F

i 
(·) is well defined.

(2) Next, we show that each position i yields a constant expected profit π
i
 within 

the entire support [p\
i+1

, p\
i–1

].
If the firm in position i (i = 2, ..., n – 1) prices at p ∈ [p\

i
, p\

i–1
], it only competes with 

the firm in position i – 1 for the demand α
i 
β

i
. (Recall that b

i
 = P

j=1
i–1(1 – a

j 
).) Thus, 

the expected profit is p
i
+(p) = [1 – F

i–1
– (p)] · p · a

i 
b

i
 ≡ a

i 
b

i  
p\

i 
. If it prices in the lower 

interval [p\
i+1

, p\
i
], it will win over the firm above and capture the demand α

i 
β

i 
, and 

meanwhile compete with the firm below for the demand α
i+1

β
i+1

, which leads to the 
expected profit:

	

π α β α β

α β
i i i i i i

i i i

p p F p p

p

−
+
+

+ +( ) = ⋅ + − ( )  ⋅ ⋅

≡

1 1 1 1

.

Therefore, p
i
+ (p) = p

i
– (p); that is, the expected profit remains constant over the entire 

support.
The firm at position n competes only with the firm above it. A calculation similar 

to that for the above p
i
+(p) shows a constant expected profit b

n 
p\

n
. Similarly, we can 

verify the constant expected profit for the firm at position 1.4

(3) Now we verify that no unilateral profitable deviation exists by pricing outside 
the given support.

Suppose the firm in position i (≥ 3) prices at p > p\
i–1

. If p < p\
i–2

, it faces a competition 
with the two firms above, and the expected profit is

	
π α β α β

α
i i i i i i i

i ip F p F p p
p p( ) = − ( )  − ( )  ⋅ ⋅ =

−( )
−
+

−
− − −1 11 2

2 2

αα αi i

ip

p− −

−

−( )1 2

1

1
,

which is strictly decreasing in p; that is, p
i
(p) < p

i
(p\

i–1
), ∀p ∈ (p\

i–1
,  p\

i–2
). If p ≥ p\

i–2
, then 

the firm would have zero demand (and thus zero profit) because the firm right above 
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it charges a lower price for sure. The firms at positions 1 and 2 will clearly not charge 
a price higher than p\

1
, since p\

1
 = w, consumers’ willingness to pay. Thus, there is no 

unilateral profitable deviation by pricing higher beyond the given support.
Suppose the firm in position i (≤ n – 2) prices at p < p\

i+1
. If p ∈ [p\

i ′+1
, p\

i ′] (i′ ≥ i + 1), 
it could capture all consumers who stop sampling at any position from i to i′ – 1. We 
denote the amount of those consumers as D

ii ′. In addition, it competes with the firms 
in positions i′ and i′ + 1 for consumers who stop sampling at positions i′ and i′ + 1. 
Thus, the expected profit can be written as

π α βi ii i i i i ip D p F p p F p F p( ) = + − ( )  + − ( )  − ( )′ ′
−

′ ′ ′
−

′+
+1 1 1 1 

= + − ( )  ⋅

= +

′+ ′+

′ ′
−

′ ′ ′

′ ′ ′

p

D p F p p

D p

i i

ii i i i i

ii i i

α β

α β

α β

1 1

1

pp
p

pi
i

′
′+1 ,

where the second and third steps are derived by substituting in F +
i ′+1

(p) and F
i ′
–(p) from 

Equation (1), respectively. Note that D
ii ′ ≥ a

i ′–1
b

i ′–1
 ≥ a

i ′bi ′, where the last inequality is 
due to the assumption a

i
 ≥ a

i+1
(1 – a

i 
). Therefore, p

i
(p\

i ′) – p
i
(p\

i ′+1
) = (p\

i ′ – p\
i ′+1

)(D
ii ′ – 

a
i ′ bi ′) ≥ 0. Also noticing that π

i 
(p) is convex, we can conclude that p

i 
(p) < p

i 
(p\

i ′), 
∀p ∈ (p\

i ′+1
, p\

i ′). Iteratively, we get p
i 
(p) ≤ p

i 
(p\

i+1
), ∀p < p\

i+1
. For firms at position n – 1 

and n, clearly, it is unprofitable to price below p\
n
, since otherwise the profit margin 

would decrease without an increase in demand. Hence, there is no unilateral profitable 
deviation by pricing below the given support.

Combining items (2) and (3) above , we conclude that given other firms’ strategies, 
each firm is indifferent in pricing over the given support and has no profitable devia-
tion. Therefore, the price strategy described in the proposition is a mixed-strategy 
equilibrium.

Proof of Corollary 2

For i = 2, ..., n – 1, denote E
i
– (p

i 
) and E

i
+ (p

i 
) as the price expectations from position 

i, conditional on p
i
 ∈  [p\

i+1
, p\

i 
] and conditional on p

i
 ∈  [p\

i 
, p\

i–1
], respectively. Also 

denote f
i
–(·) and f

i
+(·) as the corresponding conditional probability density functions. 

According to Equation (1), both f
i
–(p) and f

i+1
+  (p) take the form of K /p2 on the same 

support [p\
i+1

, p\
i
] and thus must be identical. (It can also be calculated that K is p\

i 
p\

i+1 
/

(p\
i
 – p\

i+1
) in the former and is 

	

α
α α

i

i i

i i

i

p p

p+

+

+−( )1

1

21

in the latter. They are the same due to Equations (2) and (3)). Therefore, E
i
–(p

i
) = 

E+
i+1

(p
i+1

). Notice that the expected price from the ith position E(p
i 
) is the weighted 

average of E
i
–(p

i 
) and E

i
+(p

i 
), and that from the i + 1th position, E(p

i+1
) is the weighted 

average of E –
i+1

(p
i+1

) and E +
i+1

(p
i+1

). Because E
i
–(p

i 
) = E +

i+1
(p

i+1
) and E

i
+(p

i 
) > E –

i+1
(p

i+1
), 

E(p
i 
) > E(p

i+1
). Similar arguments apply to position 1 and position n.
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Proof of Proposition 2

First, we show that given consumers’ search strategies (i.e., nonshoppers’ optimal 
stopping prices r

1
* and r

2
*), and other firms’ pricing strategies as in Equation (8), no 

firm has profitable deviation in pricing. When pricing any p ∈ [p\
2
, p\

1
], a firm achieves 

a constant expected profit

	
π α α α α α α αp p p F p p( ) = + −( )  + −( ) − ( )  ≡ + −( ) 

1

3
1 1 1

1

3
1

2 2
1

by substituting in F(p). If a firm deviates to charge a price equal to r
1
*, it forgoes the 

type 2 consumers while still retaining the type 1 consumers. Its expected profit would 
be

′ ( ) =π αr r1 1
1

3
* *.

Notice that 

	
r r2 1

1

2
* *,>

− α

which implies 

	
′ ( ) < + −( ) π α α αr p1 1

1

3
1* .

Because any price p ∈  (r
2
*, r

1
* ) yields an even lower expected profit and any price 

p > r
1
* results in zero profit, there is no profitable deviation from pricing above p\

1
. 

Also, there is no profitable deviation from underpricing, because any p < p\
2
 yields a 

lower profit level than 

	

1

3
1 1α α α+ −( )  p .

Second, we show that given firms’ pricing strategies in Equation (8), r
1
* and r

2
* are 

rational. By Equation (7), consumers’ rationality requires

	

r p dF p k

r p dF p k

p

r

p

r

2

1

0

0

2

2

2

1

*

*

*

*

,

−( ) ( ) − ′ =

−( ) ( ) − =









∫

∫

which is ensured by 

F p dp k
p

p ( ) = ′∫
2

1

and r
1
* = r

2
* + k – k′. Notice that because r

2
* < r

1
* < 1, it is rational for both types of 

nonshoppers to enter the market.
Altogether, the strategy profile specified in Proposition 2 is an equilibrium.
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Proof of Proposition 3

First, F(p) in Equation (9) is a well-defined cumulative distribution function. We can 
verify that F(p\

4
) = 0, F(p\

1
) = 1, and F is increasing in the two segments of the sup-

port. Also, F(p\
3
) = F(p\

2
) = 1 – f. To see this, first notice that φ is the solution to the 

quadratic equation

	
p p3

2 2 2
11 1 3 1α α α φ φ α φ α+ −( ) + +( ) + −( )



 = .

	  
(B1)

Let the left-hand side of Equation (B1) be f(φ). The condition 

	

α
α α3 2

1

21 2 1−
< <

−
r r r* * *

ensures that f (0) < a p\
1
 and f (1) > a p\

1
. Also, the quadratic coefficient of f (φ) is posi-

tive. Hence, f ∈ (0, 1) is well defined. Therefore, substituting Equation (B1) and the 
definition of p\

2
 into the first and second equations of Equation (9), respectively, we 

have F (p\
3
) = F (p\

2
) = 1 – f. The price support is also well defined. p\

2
 > p\

3
 because 

	

p
p

x x x
3

1
2 2 21 1 3 1

=
+ −( ) + +( ) + −( )

α

α α α α

by Equation (B1) and its denominator is greater than that of p\
2
 (i.e., a + a(1 – a)[1 + x + 

x2] + 3(1 – a)2x2 – a – 3(1 – a)x2 = a(1 – a)[(1 – x2) + x (1 – x)] > 0). Similarly, com-
paring the denominators of p\

3
 and p\

4
, we have p\

3
 > p\

4
.

Next, we show that given consumers’ optimal stopping prices (i.e., r
1
* and r

2
*), and 

other firms’ pricing strategies, no firm has profitable deviation in pricing. When pric-
ing p ∈ [p\

4
, p\

3
], a firm’s expected profit function can be written as

π α α α αp p F r F r p( ) = + −( ) + − ( )( ) + − ( )( )





+ −( ) −
1

3

1

3
1 1 1 1 1 12 2

2 2* * FF p p( ) 
2

,

where the first term on the right-hand side is the expected revenue from the type 1 
consumers, the second term is that from the type 2 consumers, and the third term is 
that from shoppers. In particular, the expected revenue from the type 2 consumers 
consists of three parts: those who inspect this firm first and stop there ((1/3)a(1 – a)), 
those who inspect another firm first but find its price exceeding r

2
* and continue to 

inspect this firm

2
1

3
1 1

1

22× −( ) − ( )( ) ×





α α F r* ,

and those who inspect the other two firms first but find both their prices exceeding r
2
* 

and continue to inspect this firm 

2
1

3
1 1

1

2
12 2× −( ) − ( )( ) − ( )( )





α α F r F r* * .
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Substituting F(p) from the first equation of Equation (9) (with F(r
2
*) = 1 – f) into the 

above profit function, we have p(p) ≡ (1/3)a p\
1
, ∀p ∈ [p\

4
, p\

3
]. Similarly, when pricing 

p ∈ [p\
2
, p\

1
], a firm’s expected profit function can be written as

	
π α αp p F p p( ) = + −( ) − ( ) 

1

3
1 1

2
,

where the first term on the right-hand side is the expected revenue from the type 1 
consumers and the second term is that from the type 2 consumers and the shoppers. 
Substituting in F(p) from the second equation of Equation (9), we have p(p) ≡ (1/3)ap\

1
, 

∀p ∈ [p\
2
, p\

1
]. Therefore, pricing within the support leads to a constant expected profit. 

In addition, any price p ∈ (p\
3
, p\

2
) yields a lower profit than p(p\

2
). Any price p > p\

1
 yields 

zero profit. Any price p < p\
4
 yields a lower profit than p(p\

4
). Therefore, there is no 

profitable unilateral deviation for any firm.
Given firms’ pricing strategies, r

1
* and r

2
* are rational because the rationality 

requirements

r p dF p k

r p dF p r p dF p k

p

p

p

p

p

p

2

1 1

4

3

2

1

4

3

*

* *

−( ) ( ) = ′

−( ) ( ) + −( ) ( ) =

∫

∫∫





are ensured by Equation (10). Notice that because r
2
* < r

1
* < 1, it is rational for both 

types to enter the market.
Altogether, the strategy profile specified in Proposition 3 is an equilibrium.

Proof of Proposition 4

To prove by contradiction, suppose that k
1
 ≥ k

3
 and k ′

1
 ≥ k ′

3
 and that the price pattern 

in Equation (1) is an equilibrium. Then for both the type 1 and the type 2 consumers, 
inspecting the first position is dominated by inspecting the third one, because the 
third position offers a lower price for sure, while it does not incur a higher search 
cost. Thus, the rational search strategy should not involve inspecting the first position. 
In this case, the first firm has zero profit by charging p ∈ [p\

2
, p\

1
] and will deviate to 

charge a lower price p′ ∈ [p\
3
, p\

2
), which gives positive expected profit. Also, given firm 

3’s price support, no matter what search order consumers choose between firm 2 and 
firm 3, it is suboptimal for firm 2 to price p ∈ (p\

2
, p\

1
). In any case, the given pricing 

pattern cannot hold in equilibrium if k
1
 ≥ k

3
 and k ′

1
 ≥ k ′

3
.

Proof of Proposition 5

First, we show that given consumers’ search strategies and other firms’ pricing strat-
egies, no firm has profitable unilateral deviation. For firm 1, charging ∀p ∈ [p\

2
, p\

1
] 

gives a constant expected profit

π α α α α1 2 11 1p p p F p p( ) = + −( ) − ( )  ≡
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by substituting in firm 2’s pricing strategies. Similarly, we can show that firm 2 has a 
constant expected profit by charging any price within [p\

3
, p\

1
) because

π α α α α

π α α

2 1 2 2 1

2

1 1 1

1 1

p p F p p p p p

p p

( ) = −( ) − ( )  ≡ −( ) ∈( )
( ) = −( ) + −

,

αα α α( ) − ( )  ≡ −( ) ∈ 
2

3 2 3 21 1p F p p p p p, .

Notice that p
2
(p\

1
) < a(1 – a)p\

2
 because of the mass point in F

1
 at the upper bound. 

Nevertheless, because F
2
 places no mass on p\

1
, firm 2’s expected profit is unaffected. 

Firm 3 also has constant profit by charging any price within its support:

π α α3
2

2
2

3 3 21 1 1p p F p p p p p( ) = −( ) − ( )  ≡ −( ) ∈ , .

If firm 3 deviates to charge p ∈ (p\
2
, p\

1
), its profit would be

′ ( ) = −( ) − ( )  − ( )  = −( ) −( )
π α α3

2
2 1 2

11 1 1 1p p F p F p p
p p

p
,

which is decreasing in p. Therefore, pricing above p\
2
 is not profitable for firm 3. Also, 

firm 1 cannot achieve a higher profit by deviating to charge p ∈ [p\
3
, p\

2
). To see this, 

first notice that after inspecting the first position, type 2 consumers’ search strategy, 
d (p, {2, 3}), is to inspect the second position if the price learned from firm 1 exceeds 
r

2
, and to stop and buy from firm 1 otherwise. Here, r

2
 (p\

3
 < r

2
 < p\

2
) is defined by

r p dF p k
p

r
2 2 2

3

2 −( ) ( ) = ′∫ .

When p ∈  (r
2
, p\

2
), type 2 consumers continue to inspect the second position, and 

firm 1’s profit would be

′ ( ) = + −( ) − ( )  + −( ) − ( )  − ( ) π α α α α1 2
2

2 31 1 1 1 1p p p F p p F p F p

== + −( ) + −( ) −( )
−( )α α α α

α
α

p p p
p p

p
1 1

13
2

3
2 ,

which is convex in p. Because p′
1
(p\

3
)  =  p\

3
  <  ap\

1
  =  p′

1
(p\

2
), we can conclude that 

p′
1
(p) < p

1
(p\

2
) for ∀p ∈ (r

2
, p\

2
). When p ∈ [p\

3
, r

2
], type 2 consumers stop searching 

and buy from firm 1, and firm 1’s profit function thus becomes

′′( ) = + −( )  + −( ) − ( )  − ( ) π α α α α1
2

2 31 1 1 1p p p F p F p ,

which again is convex in p. We can verify that p″1(p\3) < p
1
(p\

2
) = ap\

1
. In addition, the 

condition on k ′
2
 ensures that p″

1
(r

2
) < p

1
(p\

2
). This is because (r

2
 – p\

3
) – p\

3 
ln (r

2 
/p\

3
) = k′

2
 

by substituting F
2
 into the definition of r

2
, which implies that r

2
 increases with k ′

2
. When 

k ′
2
 < (g * – p\

3
) – p\

3 
ln (g */p\

3
), r

2
 < g *. Notice that g * solves the equation p″

1
(g *) = ap\

1
. 

Hence, p″
1
(r

2
) < p

1
(p\

2
), and thus p″

1
(p) < p

1
(p\

2
) for ∀p ∈ [p\

3
, r

2
]. Therefore, firm 1 has 

no profitable deviation by underpricing. In addition, for all firms, charging any price 
greater than p\

1
 leads to zero profit, and charging any price below p\

3
 leads to lower profit. 
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Altogether, all firms achieve constant profit within their given price supports and no 
firm has profitable deviation outside their price supports. Therefore, given consumers’ 
search strategies, firms’ pricing strategies form an equilibrium.

Next, we show that given firms’ pricing strategies, the search strategies of nonshop-
pers listed in Table 1 are rational. Consider type 1 consumers’ strategies. When making 
decision d (z, {1}), if z ≤ r

1
, by Equation (6), the expected gain equals

EG z z p dF p k
z

1 1 01 1
2

; ,{ }( ) = −( ) ( ) − ≤∫p

because r
1
 is defined as 

r p dF p k
p

r
1 1 1

2

1 −( ) ( ) =∫

and 

z p dF p
p

z −( ) ( )∫ 1
2

is increasing in z. d(z,{2}) is to stop when z ≤ p\
1
 because, by the definition of p\

1
,

EG p p p dF p k
p

p
2 2

1
1 1

1 1

1 1 2 2
3

1; ,

ln ln

{ }( ) = −( ) ( ) −

= +
+ −( ) −

+ −(
∫

α α
α α

α α))( )
−













− ≤
1

01 2α
p k .

Similarly, for d(z,{3}), by the condition 

k k p3 3 11
1 1 1

≥ ′ > +
−( ) + −( ) 













α α
α α α

ln
,

we can check that

EG p p p dF p k3 3 1
1 1 11 1 3 3; ,

ln{ }( ) = −( ) ( ) − = +
−( ) + −( ) 











α α
α α α




− <∫ p k
p

p
1 3 0

3
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For d(z,{2,3}), notice that for any z ≤ 1, by Equation (6),

EG z z p dF p k EG z
p

z
2 2 3 2 22 2

3
; , , ; , .{ }( ) = −( ) ( ) − = { }( )∫

The reason is that the third term on right-hand side of Equation (6) equals zero be-
cause the price p learned from the second firm is less than p\

1
; thus, the lowest price 

z ′  =  min{z, p}  ≤  p\
1
, and the decision d (z′, {3}) is to stop. By similar arguments,  

EG(3; z, {2, 3})  =  EG(3; z,  {3}). Therefore, comparing EG(2; z, {2, 3}) and 
EG(3; z, {2, 3}) is equivalent to comparing EG(2; z, {2}) and EG(3; z, {3}). Notice 
that the condition 
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k k p
p

3 2 3
1

1 1
1 1− >

−
+

−
+ −( )( )α

α
α

α
α αln ln

ensures that EG(2; z, {2}) > EG(3; z, {3}) for ∀z ∈ [p\
1
, 1]. Therefore, if z > p\

1
, it is 

optimal to inspect the second position; if z ≤ p\
1
, it is optimal to stop because both 

EG(2; z, {2}) and EG(3; z, {3}) are nonpositive. For the decision d(z,{1,3}), we can 
similarly show that EG(1; z, {1, 3}) = EG(1; z, {1}) and EG(3; z, {1, 3}) = EG(3; z, {3}). 
Notice that the condition 

k p1 1

1 1 1

1 1
<

−( ) − + −( )( )
+ −( )

α α α α
α α
ln

ensures that EG(1; p\
1
, {1}) > 0 and p\

2
 < r

1
 < p\

1
 by the definition of r

1
. Recall that 

EG(3; z, {3}) < 0 if z ≤ p\
1
. We can also conclude that for ∀z ≥ p\

1
, EG(1; z, {1}) > 

EG(3; z, {3}). Therefore, the decision d(z, {1, 3}) listed in Table  1 is rational. For 
d(z, {1, 2}), when z ≤ p\

2
, EG(1; z, {1, 2}) = EG(1; z, {1}) < 0 and EG(2; z, {1, 2}) = 

EG(2; z, {2}) < 0, and thus to stop is optimal. Finally, we need to check the first-step 
decision d(1, {1, 2, 3}). We need to compare EG(1; 1, {1, 2, 3}), EG(2; 1, {1, 2, 3}), 
and EG(3; 1, {1, 2, 3}). Based on the subsequent strategies, we can conclude that 
EG(1; 1, {1, 2, 3}) = EG(1; 1, {1}) > 0, which indicates that to enter the market is always 
rational. Also, EG(3; 1, {1, 2, 3}) = EG(3; 1, {3}), and we have EG(1; 1, {1, 2, 3}) > 
EG(3; 1, {1, 2, 3}) because EG(1; 1, {1}) > EG(3; 1, {3}), as is already shown. We can 
write the expected gain of first inspecting the second position as

EG p dF p k p x dF x k dF p
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k dF p
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p

p

1 2

1 1 1 1

2

1

1

1

2

11 0  = { }( )EG 1 1 1 2 3; , , , .

Therefore, it is optimal to start searching from the first position rather than the second 
or the third. In a similar manner, we can check that all strategies of the type 2 consum-
ers listed in Table 1 are rational.

Altogether, under the given parametric conditions, the strategy profile specified in 
Proposition 5 is a rational-expectations equilibrium.




