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Web Appendix A

Heterogeneous Consumer Valuation

In the baseline model, we assumed that consumers have the same willingness-to-pay to

avoid unnecessary distraction from the demand factor. Now we relax this assumption by

considering heterogeneous consumer valuation and allow consumers' willingness-to-pay to

be di�erent from one to another. As we will see, the main results continue to hold.

We assume that consumers' willingness-to-pay satis�es a distribution with a support

[0, v]. Correspondingly, the demand function is thus D(p), where p ∈ [0, v] with D(0) = 1

and D(v) = 0. Technically, we assume that D(·) is twice-continuously di�erentiable and non-

increasing, and the revenue function pD(p) is concave. Denote pm = arg maxp∈[0,v] pD(p) as

the optimal monopoly price for H. We let pm > c to rule out trivial cases; otherwise, H 's

optimal monopoly price is below L's marginal cost, which leads to a simple pure strategy for

H regardless of its winning position.

We can conduct a similar analysis as in the baseline model to derive the equilibrium.

Again, no pure-strategy equilibrium exists in the second stage price competition. When H

wins the �rst position, as in the baseline model, the two �rms randomize their prices over a

common support [p, p̄] with a possible mass point at the upper bound. The upper bound now

is H 's optimal monopoly price pm, since H has no incentive to charge a higher price given

the demand function (i.e., p̄ = pm). By charging the lower bound price p, H can attract



all consumers and earn the same pro�t as charging the upper bound price. Therefore, if we

de�ne pl as the solution to plD(pl) = αpmD(pm), then p = pl. Given the concavity of the

revenue function, both pm and pl are well de�ned. As in the baseline model, one exception

from the above common-support mixed strategy equilibrium is that when the cost advantage

is dominating, H may play a pure strategy (while L still plays a mixed strategy). H is better

o� playing a pure strategy of simply charging a price equal to L's marginal cost to occupy

the entire market, if doing so generates more revenue than randomizing its price; that is, if

cD(c) > αpmD(pm), or c > pl by the de�nition of pl. Combining the two cases together,

the two �rms' pricing strategies are characterized by the following cumulative distribution

functions:

FH(p) =

 1− D(p)(p−c)
D(p)(p−c)

1

p ∈ [p, p̄)

p = p̄

FL(p) =


D(p)p−D(p)p

(1−α)D(p)p

1

p ∈ [p, p̄)

p = p̄

(18)

where p̄ = pm and p = max{pl, c}. The expected pro�ts are π1
H = D(p)p and π2

L = (1 −

α)D(p)(p− c), respectively.

Similarly, when L wins the �rst position, we also have a support of the price distribution

[p′, p̄′]. The upper bound price L may charge is its optimal monopoly price (i.e., p̄′ =

arg maxp∈[0,v] D(p)(p− c)). The lower bound price is the one that attracts all consumers and

leads to the same pro�t (i.e., p′ solves D(p′)(p′ − c) = αD(p̄′)(p̄′ − c)). The two �rms adopt

the following strategies:

FH(p) =
D(p)(p−c)−D(p′)(p′−c)

(1−α)D(p)(p−c) p ∈ [p′, p̄′]

FL(p) =

 1− D(p′)p′

D(p)p

1

p ∈ [p′, p̄′)

p = p̄′

(19)

and the resulting expected pro�ts are π2
H = (1−α)D(p′)p′ and π1

L = D(p′)(p′−c), respectively.

The equilibrium outcomes (e.g., equilibrium bidding and price dispersion) can be simi-



larly derived as in the baseline model. Figure 13 illustrates the equilibrium outcome with

uniformly distributed consumer valuations (i.e., D(p) = 1 − p
v
, p ∈ [0, v]). Similar to the

baseline case, while the prominent position is always desirable for the low-type �rm, the

high-type �rm may �nd the less-prominent position more pro�table in some cases (shad-

owed region in Figure 13a). Consequently, the high-type �rm bids aggressively to win the

prominent position only when either its competitive advantage or the location prominence

di�erence is salient (unshadowed region in Figure 13b); otherwise, the low-type �rm wins the

prominent position (shadowed region in Figure 13b). Regarding the expected prices from the

two locations, a similar pattern is observed: The expected price from the prominent position

will be higher (shadowed region in Figure 13c), unless �rms' competence di�erence overrides

the location prominence di�erence (unshadowed region in Figure 13c).

(a) Endogenous Valuation (b) Bidding Outcome (c) Price Dispersion

Figure 13: Uniformly Distributed Consumer Valuations

Heterogeneity in consumer valuation a�ects the �rms' pricing decision only in that it

induces a trade-o� between the pro�t margin and the demand quantity (as in a standard

monopoly pricing setting) facing both �rms; yet, it does not alter the relative competitive

situation between �rms and thus has little in�uence on the major insights we have already



obtained. When re�ected in the graph, its e�ect can be depicted as a distortion in shape

with no change in pattern.

Web Appendix B

Strategic Choice of Ordering: A Brief Analysis

The following analysis mainly focuses on the case with a relatively small portion of

sophisticated consumers (i.e., β < 1
2
). For the case where β > 1

2
, similar analysis applies.

Along the line of backward induction, we start with the second-stage price competition.

Notice that in the second stage, sophisticated consumers can only expect �rms' equilibrium

price distributions rather than actually observe them. Therefore, by the concept of rational-

expectations equilibrium, �rms decide their pricing strategies given sophisticated consumers'

ordering choice (which is in turn rational given �rms' equilibrium pricing strategies). It thus

implies that a �rm's total payment to the auctioneer (i.e., a unit amount times the number

of consumer visits) is considered as �xed when it makes the price decision. Therefore, we

can derive the equilibrium pricing independent of the �rst-stage bids.

Again, no pure-strategy equilibrium exists in the second-stage price competition, and

�rms play mixed strategies in equilibrium. First, we consider the case in which H wins

the �rst position. By Lemma 1, �rms' equilibrium pricing strategies follow Eq.(1), given

that all consumers start searching from the �rst position (i.e., σ = 1). Notice that σ = 1

holds in equilibrium if E(p1) ≤ E(p2). Recall that by Proposition 3, when α < α∗(c, w),

E(p1) < E(p2), where α∗(c, w) is de�ned by Eq.(3). Therefore, when α < α∗(c, w), all

consumers starting searching from the �rst position and both �rms pricing according to

Eq.(1) are an equilibrium in the second stage.

When α > α∗(c, w), however, E(p1) > E(p2), and sophisticated consumers thus will not

start from the �rst position. Assume that all sophisticated consumers start sampling from

the second position (i.e., σ = 0). Then, the mixed-strategy equilibrium in pricing can be

derived as



F 1
H(p) =

[1−α(1−β)](p−p)
(1−α)(p−c) p ∈ [p, w)

F 2
L(p) =

(1−αβ)(p−p)
(1−α)p

p ∈ [p, w]
(20)

where p = α(1−β)
(1−αβ)

w. Notice that H has a mass point at the upper bound as long as c <

α(1−2β)
1−αβ w. For the above to be an equilibrium, we need to ensure that E(p1) ≥ E(p2).

According to E(p1) = E(p2), we can de�ne α̂(c, w; β) as

α̂(1− 2β)

1− α̂β
+

[1− α̂(1− β)]( α̂(1−β)
(1−α̂β)

− c
w

)

1− α̂
ln

1− c
w

α̂(1−β)
(1−α̂β)

− c
w

− α̂(1− β)

1− α̂
ln

(1− α̂β)

α̂(1− β)
= 0 (21)

Notice that α∗(c, w) in Eq.(3) can be rewritten as α̂(c, w; 0). As can be veri�ed, when

α > α̂(c, w; β), E(p1) > E(p2). Therefore, when α > α̂(c, w; β), sophisticated consumers

starting from the second position and �rms pricing according to Eq.(20) are an equilibrium

in the second stage.

In the region where α̂(c, w; 0) < α < α̂(c, w; β), as can be concluded from the above

analysis, there exists no equilibrium in which sophisticated consumers play pure strategy.

Instead, sophisticated consumers play mixed strategy with 0 < σ < 1, and the expected

prices from the two positions are equal (i.e., E(p1) = E(p2)). For any β′ ∈ (0, β), we

can de�ne a curve α = α̂(c, w; β′) according to Eq.(21). When (α, c
w
) lies on that curve,

sophisticated consumers playing mixed strategy σ = 1− β′

β
, and �rms pricing the following

strategies are an equilibrium in the second stage:

F 1
H(p) =

[1−α(1−β′)](p−p)
(1−α)(p−c) p ∈ [p, w)

F 2
L(p) =

(1−αβ′)(p−p)
(1−α)p

p ∈ [p, w]
(22)

where p = α(1−β′)
(1−αβ′)w.

We next consider the case where L wins the �rst position. Proposition 3 indicates E(p1
L) >

E(p2
H), given that all consumers start searching from the �rst position. Therefore, σ = 1

cannot be part of an equilibrium. We then assume that all sophisticated consumers start



sampling from the second position (σ = 0). The resulting pricing strategies are

F 2
H(p) =

(1−αβ)(p−p)
(1−α)(p−c) p ∈ [p, w]

F 1
L(p) =

[1−α(1−β)](p−p)
(1−α)p

p ∈ [p, w)
(23)

where p = α(1−β)(w−c)
1−αβ + c. As we can show, FL �rst order stochastically dominates FH such

that E(p1
L) > E(p2

H), which is consistent with σ = 0. Thus, in the second-stage game when L

wins the �rst position, the equilibrium is that sophisticated consumers start from the second

position and the two �rms price according to Eq.(23).

We can summarize �rms' equilibrium expected pro�ts from sales in di�erent positions

within di�erent parameter regions as follows:

(π1
H , π

2
L) =



(c, 0)

(αw, (1− α)(αw − c))(
α(1− β)w, [1− α(1− β)](α(1−β)

(1−αβ)
w − c)

)
(
α(1− β′)w, [1− α(1− β′)](α(1−β′)

(1−αβ′)w − c)
)

if 0 < α < c
w

;

if c
w
< α < α̂(c, w; 0);

if α̂(c, w; β) < α < 1;

if α = α̂(c, w; β′),∀β′ ∈ (0, β).

(π2
H , π

1
L) =

(
[1− α(1− β)](α(1−β)(w−c)

1−αβ + c), α(1− β)(w − c)
)

(24)

For the �rst-stage bidding, notice that here the weighting factors (or the expected clicks

at the �rst position) may not equal 1. For example, in the parameter region III in Figure

5c, ωH = 1 and ωL = 1 − αβ because when L wins the �rst position, its equilibrium

price expectation is higher so that sophisticated non-shoppers will visit the second position

directly. Nevertheless, as is shown in the paper, �rms' weakly dominant strategy is to submit

a per-click bid bi = max{∆πi,0}
ωi

, where ∆πi = π1
i − π2

i and i ∈ {H,L}, and the auctioneer

ranks the �rms according to the score si = ωibi = max{∆πi, 0}, which is independent of ωi.

By comparing ∆πH and ∆πL (and then checking whether the winning bids are positive),

we can derive the bidding outcome and pin down the boundaries of �rms' winning regions.

Use Figure 5c for illustration. When 0 < α < c
w
, ∆πH > ∆πH if c

w
> 2−α

3−α−αβ (region II).



When c
w
< α < α̂(c, w; 0), comparing ∆πH and ∆πL leads to the boundary of region III:

c
w

=

αβ(1−α)(2−α)
α2(1+β−β2)−α(4−β)+2

. Note that the three curves c
w

= 2−α
3−α−αβ ,

c
w

= αβ(1−α)(2−α)
α2(1+β−β2)−α(4−β)+2

, and

c
w

= α intersect at one point. When α̂(c, w; β) < α < 1, ∆πH > ∆πH if α >
(2−β)−

√
5β2−6β+2

(1−β)(1+2β)

(region IV). When α̂(c, w; 0) < α < α̂(c, w; β), for any curve α = α̂(c, w; β′) (with β′ ∈ (0, β))

in between, its intersection with c
w

= α(2−α)(1−α)(β−β′)
(1−αβ′)[(1+β−β2−ββ′)α2−(4−β−β′)α+2]

de�nes a cuto� in

comparing ∆πH and ∆πL. The boundary of region V consists of all these cuto�s. Together

with the discussion on the expected prices in the second-stage pricing game, the spatial price

dispersion pattern can be summarized as by Figure 5c.

Web Appendix C

Equilibrium Pricing in the Three-Firms Case

In this section, we provide a complete description of the equilibrium pricing strategies in

the case of three competing �rms. We organize the results by di�erent parameter regions

under di�erent scenarios. The proofs to the �rst two results are outlined, and the rest can

be analyzed in a similar fashion. For convenience, denote H − L − L as the case when H

stays in the �rst position and two L �rms are in the second and third positions. Similar

interpretations apply to L −H − L and L − L −H. Also, we call the �rm in position i as

�rm i, where i = 1, 2, 3. As before, we use Fi (·) to represent the cumulative distribution

function (cdf ) for the pricing strategy of �rm i.

(1) The Case of H − L− L

Result 1. In the case of H − L− L, when c
w
< α2

1+α(1−α)
, the equilibrium pricing strategies



are:

F1 (p) =


1− p̄2−c

p−c p ∈ [p̄2, p̄1)

1 p = p̄1

F2 (p) =


1− p̄3−c

p−c p ∈ [p̄3, p̄2)

1− (p̄1−p)
(1−α)p

p ∈ [p̄2, p̄1]

, (25)

F3 (p) = 1− α(p̄2−p)
(1−α)(p−c) p ∈ [p̄3, p̄2],

where p̄1 = w, p̄2 = 1
1+α(1−α)

p̄1, and p̄3 = α (p̄2 − c) + c.

For convenience, we use the superscript �+� to denote the cdf in the upper half of the

support, and we use the superscript �−� as the cdf in the lower half of the support. For

example, in Eq.25, we refer to F2 (p) = 1 − (p̄1−p)
(1−α)p

for p ∈ [p̄2, p̄1] as F+
2 (p) and refer to

F2 (p) = 1− p̄3−c
p−c for p ∈ [p̄3, p̄2) as F−2 (p).

First, we show that Fi (·) (i = 1, 2, 3) are well-de�ned cumulative distribution functions.

Notice that c < p̄3 < p̄2 < p̄1 = w, so that the supports are well de�ned. Also, we can check

all the bounds: F1 (p̄2) = 0, F−1 (p̄1) = 1 − p̄2−c
p̄1−c < 1, F2 (p̄3) = 0, and F−2 (p̄2) = F+

2 (p̄2)

because p̄3−c
p̄2−c = (p̄1−p̄2)

(1−α)p̄2
= α, F2 (p̄1) = 1, F3 (p̄3) = 1− α(p̄2−p̄3)

(1−α)(p̄3−c) = 1− α(1−α)(p̄2−c)
(1−α)(p̄3−c) = 0, and

F3 (p̄2) = 1. Moreover, all Fi (p) are increasing in p. Therefore, all Fi (·) are well-de�ned

cdf s.

Second, we can show that each position i yields a constant expected pro�t πi within the

entire support, i = 1, 2, 3. For example, consider the second position. For p ∈ [p̄3, p̄2),

π−2 (p) = α (1− α) (p− c) + (1− α)2 [1− F3 (p)] (p− c) , (26)

where the �rst part on the right-hand side accounts for the demand from those consumers

who stop searching at the second position (they purchase from position 2 for sure because

p is lower than the lower bound of F1's support, p̄2), and the second part accounts for the



demand from shoppers when its price is lower than the third position. Substituting in F3 (p),

we have:

π−2 (p) = α (1− α) (p− c) + (1− α)2 α (p̄2 − p)
(1− α) (p− c)

(p− c)

≡ α (1− α) (p̄2 − c) . (27)

Similarly, for p ∈ [p̄2, p̄1], we have:

π+
2 (p) = α (1− α) [1− F1 (p)] (p− c)

= α (1− α)
p̄2 − c
p− c

(p− c) ≡ α (1− α) (p̄2 − c) . (28)

Therefore, �rm 2 achieves a constant expected pro�t level π2 = α (1− α) (p̄2 − c) when

charging any price within its support [p̄3, p̄1]. Similar analysis applies for both π1 = αp̄1 and

π3 = (1− α)2 (p̄3 − c).

Finally, we need to verify that there is no pro�table unilateral deviation. For example, if

H deviates to price p ∈ [p̄3, p̄2), the pro�t function would then become:

π
′

1 (p) = αp+ α (1− α) p
[
1− F−2 (p)

]
+ (1− α)2 p

[
1− F−2 (p)

]
[1− F3 (p)]

= αp+
p̄3 − c
p− c

α (1− α) (p̄2 − c)
p

p− c
, (29)

which is convex in p. Notice that when c
w
< α2

1+α(1−α)
, π1 (p̄2) ≥ π

′
1 (p̄3). Therefore, π

′
1 (p) <

π1 (p̄2) for ∀p ∈ [p̄3, p̄2). Thus, when c
w
< α2

1+α(1−α)
, H will not deviate to charge a price

below the given support. Similarly, we can show that it is not pro�table for �rm 3 to charge

a price above its given support.

Altogether, we can conclude that the price strategy described is a mixed-strategy equi-

librium.

Result 2. In the case of H−L−L, when α2

1+α(1−α)
< c

w
< min{α, 1−α(1−α)

[1+α(1−α)]2
}, the equilibrium



pricing strategies are:

F1 (p) =


F ∗1 (p) p ∈ [p̄4, p̄3]

1− αp̄1−c
α(p−c) p ∈ [p̄2, p̄1)

1 p = p̄1

F2 (p) =


F ∗2 (p) p ∈ [p̄4, p̄3)

1− α(p̄2−c)
p−c p ∈ [p̄3, p̄2)

1− (p̄1−p)
(1−α)p

p ∈ [p̄2, p̄1]

(30)

F3 (p) =


F ∗3 (p) p ∈ [p̄4, p̄3)

1− α(p̄2−p)
(1−α)(p−c) p ∈ [p̄3, p̄2],

where p̄1 = w, p̄2 = 1
1+α(1−α)

w, p̄4 = αw, and p̄3 is the solution between p̄4 and p̄2 to the

equation:

[1 + α (1− α)] p̄2
3 − [α (1− α) (1 + 2c) + 2c] p̄3 + [1 + α (1− α)]2 c2 = 0, (31)

and {F ∗1 (p) , F ∗2 (p) , F ∗3 (p)} solves:


αp+ α (1− α) p [1− F ∗2 (p)] + (1− α)2 p [1− F ∗2 (p)] [1− F ∗3 (p)] = αw

α (1− α) (p− c) [1− F ∗1 (p)] + (1− α)2 (p− c) [1− F ∗1 (p)] [1− F ∗3 (p)] = (1− α) (αw − c)

(1− α)2 (p− c) [1− F ∗1 (p)] [1− F ∗2 (p)] = (1− α)2 (αw − c) .
(32)

Following similar analysis, we can show that the strategy is indeed an equilibrium, as is

brie�y outlined below.

First, the supports and the cdf s are well de�ned. Notice that when α2

1+α(1−α)
< c

w
,

F1 (p̄2) = 1− αp̄1−c
α(p̄2−c) > 0, which indicates that H may charge a price lower than p̄2 with pos-



itive probability. Also, notice that the parameter region α2

1+α(1−α)
< c

w
< min{α, 1−α(1−α)

[1+α(1−α)]2
}

ensures that there is a unique solution to Eq.(31) between p̄4 and p̄2. In fact, if we denote

the right-hand side of Eq.(31) as g (p̄3), under the given parameter condition, g (p̄4) < 0 and

g (p̄2) > 0, which ensures that p̄3 is well de�ned. Moreover, notice that p̄3 actually solves

F ∗1 (p̄3) = F1 (p̄2). To see this, by substituting p = p̄3 and F
∗
1 (p̄3) = 1− αp̄1−c

α(p̄2−c) into Eq.(32),

we can then solve the last two equations of Eq.(32) together and get:


F ∗2 (p̄3) = 1− α(p̄2−c)

p̄3−c

F ∗3 (p̄3) = 1− α(p̄2−p̄3)
(1−α)(p̄3−c) .

(33)

Substituting back into the �rst equation of Eq.(32), we have Eq.(31).

Second, �rms achieve constant pro�t within their price supports: (i) Notice that the

left-hand sides in Eq.(32) are in fact the pro�t functions for the three �rms when charging

p ∈ [p̄4, p̄3], and the right-hand sides are the constant expected pro�t they achieve over their

entire price supports. Therefore, Eq.(32) ensures that the three �rms all achieve a constant

pro�t level when pricing p ∈ [p̄4, p̄3]. (ii) F1 (p̄3) = F1 (p̄2) indicates that F1 does not put

any mass over the interval (p̄3, p̄2), which means that H does not charge any price between

p̄3 and p̄2. Thus, for p ∈ (p̄3, p̄2), �rm 2 and �rm 3 achieve a constant pro�t:


π2 (p) = α (1− α) (p− c) [1− F1 (p̄2)] + (1− α)2 (p− c) [1− F1 (p̄2)] [1− F3 (p)] ≡ (1− α) (αw − c)

π3 (p) = (1− α)2 (p− c) [1− F1 (p̄2)] [1− F ∗2 (p)] ≡ (1− α)2 (αw − c) .
(34)

(iii) F3 (p̄2) = 1, indicating that �rm 3 does not charge any price above p̄2. Therefore, for

p ∈ (p̄2, p̄1),


π1 (p) = αp+ α (1− α) p [1− F2 (p)] ≡ αw

π2 (p) = α (1− α) (p− c) [1− F1 (p)] ≡ (1− α) (αw − c) .
(35)



Finally, as we can check, �rm 1 pricing p ∈ (p̄3, p̄2) and �rm 3 pricing p ∈ (p̄2, p̄1) both

result in lower pro�ts. Therefore, there is no pro�table deviation. As a result, the pricing

strategy described is a mixed-strategy equilibrium.

Result 3. In the case of H − L − L, when min{α, 1−α(1−α)

[1+α(1−α)]2
} < c

w
< α, the equilibrium

pricing strategies are:

F1 (p) =


F ∗1 (p) p ∈ [p̄3, p̄2)

1− αp̄1−c
α(p−c) p ∈ [p̄2, p̄1)

1 p = p̄1

F2 (p) =


F ∗2 (p) p ∈ [p̄3, p̄2)

1− (p̄1−p)
(1−α)p

p ∈ [p̄2, p̄1]

(36)

F3 (p) = F ∗3 (p) p ∈ [p̄3, p̄2],

where p̄1 = w, p̄2 = 1
1+α(1−α)

w, and p̄3 = αw, and {F ∗1 (p) , F ∗2 (p) , F ∗3 (p)} solves Eq.(32).

The analysis in this case is similar to that for Result 2.

Result 4. In the case of H − L − L, when c
w
> α, �rm 1 pricing p1 = c, �rm 3 pricing

p3 = w, and �rm 2 pricing according to:

F2 (p) =


1− c−αp

(1−α)p
p ∈ [c, w)

1 p = w

, (37)

is an equilibrium.

This is a trivial case in which the cost advantage is so signi�cant that H simply charges

c and both L �rms achieve zero pro�t. Firm 2 prices in a way that �rm 1 has no pro�table

deviation.



(2) The Case of L−H − L

Result 5. In the case of L−H − L, when c
w
< α, the equilibrium pricing strategies are:

F1 (p) =


1− p̄2

p
p ∈ [p̄2, p̄1)

1 p = p̄1

F2 (p) =


1− p̄3−c

p−c p ∈ [p̄3, p̄2)

1− (p̄1−p)
(1−α)(p−c) p ∈ [p̄2, p̄1]

(38)

F3 (p) = 1− α(p̄2−p)
(1−α)p

p ∈ [p̄3, p̄2] ,

where p̄1 = w, p̄2 = p̄1+(1−α)c
1+α(1−α)

, and p̄3 = α2p̄2.

This case can be analyzed similarly to the analysis of Result 1.

Result 6. In the case of L − H − L, when c
w
> α, �rm 1 pricing p1 = w, �rm 2 pricing

p2 = c, and �rm 3 pricing according to:

F3 (p) =


1− c−αp

(1−α)p
p ∈ [c, w)

1 p = w

, (39)

is an equilibrium.

This is a trivial case, similar to Result 4.

(3) The Case of L− L−H



Result 7. In the case of L− L−H, the equilibrium pricing strategies are:

F1 (p) =


1− p̄2−c

p−c p ∈ [p̄2, p̄1)

1 p = p̄1

F2 (p) =


1− p̄3

p
p ∈ [p̄3, p̄2)

1− (p̄1−p)
(1−α)(p−c) p ∈ [p̄2, p̄1]

(40)

F3 (p) = 1− α(p̄2−p)
(1−α)(p−c) p ∈ [p̄3, p̄2] ,

where p̄1 = w, p̄3 = α (p̄2 − c) + c, and

p̄2 =
− (1− α) (1− 2α) c+ w +

√
5 (1− α)2 c2 − 2 (1− α) (1− 2α)wc+ w2

2 [1 + α (1− α)]
. (41)

This case can be analyzed similarly to the analysis of Result 1 and Result 5.

Web Appendix D

More Results for the Three-Firms Case

Recall the equilibrium pro�ts in the price competition from Table 2. We denote the three

�rms' second-stage equilibrium pro�ts in the case of H−L−L (i.e., H wins the �rst position

and the two L �rms are in the second and third positions) as u1
H , u

2
L, and u

3
L, respectively.

Similarly, we denote the equilibrium pro�ts in the L − H − L case as v1
L, v

2
H , and v

3
L, and

we denote the equilibrium pro�ts in the L− L−H case as w1
L, w

2
L, and w

3
H .

In deriving the bidding outcomes, we focus on the particular type of equilibria in which

the two low-type �rms behave symmetrically, that is, they adopt the same bidding strategies.

Figure 14 summarizes the bidding outcome. In the shadowed region, which corresponds to

the condition that u1
H − w3

H < min{w
2
L−v

3
L

1−α ,
w1

L−w
2
L

α
}, H bids lower than the two L �rms

and stays in the third position. More speci�cally, in this region, bH = u1
H − w3

H and bL =



(1− α) (u1
H − w3

H) + w1
L − w2

L. Notice that the two low-type �rms submit the same bid bL

because they are indi�erent between one position higher or not, and hence win a higher

position with equal probability. Also, notice that in our setting, all three �rms generate the

same number of clicks when they are in the same position. Therefore, they have the same

weighting factor, and the ranking is determined by the amount of their per-click bids bi. As

a result, when u1
H − w3

H <
w1

L−w
2
L

α
, bH < bL, and H is therefore placed in the third position.

To ensure that the bidding strategy is an equilibrium, we need to further check the possible

deviations. As we can see, given bL, H does not want to outbid L because its net pro�t would

be u1
H − bL, which is lower than its net pro�t in the third position, w3

H . Similarly, given bH

and the other L �rm's bid bL, neither L �rm has a pro�table deviation: First, staying in

the �rst position yields a net pro�t w1
L − bL, which equals the net pro�t from the second

position w2
L − (1− α) bH (notice that the number of click-throughs in the second position

is 1 − α). Second, underbidding to stay in the third position is not optimal either because

the net pro�t then would be v3
L�lower than the in-equilibrium net pro�t w2

L− (1− α) bH as

bH <
w2

L−v
3
L

1−α .

On the other hand, in the unshadowed region in Figure 14 (i.e., when u1
H − w3

H >

max{v1
L − u3

L,
u2L−u

3
L

1−α }), H outbids both L �rms and wins the �rst position. In this case,

bH = u1
H −w3

H , and bL =
u2L−u

3
L

1−α . Following similar arguments, we can show that none of the

three �rms has a pro�table deviation. For H, because bL < u1
H − w3

H , underbidding to be

in the third position would lead to a lower net pro�t (w3
H) than being in the �rst position

(u1
H − bL). For L, staying in the second or the third position results in the same net pro�t

because u2
L − (1− α) bL = u3

L. It is not pro�table for L to outbid H because being in the

�rst position yields a payo� of v1
L− bH , which is lower than the payo� in the second or third

position (u3
L).



Figure 14: Bidding Outcome in the Case of Three Firms

An interesting result is found in the dotted region in Figure 14. In this region, �rms

adopt mixed-strategy bidding in equilibrium. We use an example to better illustrate the

idea.

Example. When α = 0.4, c = 0.3, and w = 1, in equilibrium, both L �rms symmetrically

bid bL = 0.219 and H adopts mixed-strategy bidding. With probability p = 0.23, H bids as

high as b
′
H = 0.352 and wins the �rst position; with probability 1− p = 0.77, H bids as low

as bH = 0.155 and stays in the third position.

The example illustrates a bidding outcome in which the high-type �rm switches between

a top position and a lower position. In this case, bL = u1
H − w3

H so that H is indi�erent

between attaining the �rst position and attaining the third one. For this reason, H is willing

to mix its bid. H mixes in such a way that neither L wants to overbid or underbid its

counterpart (i.e., bidding bL is optimal, given that the other L �rm also bids bL). For this

reason, the mixing probability p satis�es:

p =
bL − (1− α) bH − w1

L + w2
L

(u2
L − u3

L)− (w1
L − w2

L)− (1− α) bH + αbL
. (42)

In addition, H's high bid b
′
H = (1− α) bL + v1

L − u2
L is high enough that L will not deviate



to bid higher than b
′
H ; meanwhile, H's low bid bH =

w2
L−v

3
L

1−α is low enough that bidding lower

than bH is not optimal for L either. As a result, bH < bL < b
′
H in equilibrium.

As we can see from Figure 14, the dotted region with mixed-strategy bidding serves as

a natural transition between the two deterministic cases that involves only pure-strategy

bidding.

Figure 15: Price Dispersion in the Case of Three Firms

Figure 15 illustrates the spatial price dispersion pattern in the three-�rms case. As we

can see, similar results exist. In the highlighted region, the high-type �rm wins the �rst

position, and the expected price from the �rst position is lower than that from the second

position, indicating that, depending on the endogenous competitive situation, an expensive

location may not necessarily be associated with expensive products.




