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Web Appendix: The Case of Multiple Competing Firms

In this section, we extend the analysis from duopolistic competition to the case with multiple

competing �rms.

Model

We now consider n (≥ 2) �rms in the market. One of them sell products catering to the mainstream

market, which is termed as M ; the other n − 1 �rms' products are designed for particular niche

markets, which are denoted as N1, ..., Nn−1. There is a continuum of consumers with mass 1. Each

consumer has a unit demand of the product. Consumers have di�erent preferences. Following the

main model, we assume θ (0 < θ < 1
2) of them are N -type consumers who prefer the niche �rms'

products to the mainstream �rm's, and 1 − θ are M -type consumers who prefer the mainstream

product. Among the n− 1 niche �rms, we consider the case in which niche �rms develop particular

features of the product that are mutually exclusive so that each consumer values one niche product

only and derives zero utility for the other niche products. For ease of exposition, we assume all niche

�rms equally share the market preference. An N -type consumer derives utility v from consuming the

niche product that she values, and derives discounted utility k̃v from consuming the mainstream

product. An M -type consumer derives utility v from consuming the mainstream product and

discounted utility k̃v from consuming the niche product that she values. k̃ is uniformly distributed

between 0 and 1 among all consumers. We normalize v to 1 without loss of generality.

We follow a similar way in modeling consumers' click behavior on the search engine results page.

The M �rm is listed in a top organic position which attracts most attention (i.e., αiM can be very



high). Similar as before, we let αiM = 1 to emphasize the diminishing promotive incentive when an

advertiser's organic rank is high. In other words, consumers click M 's link with probability 1. In

contrast, the niche �rms' organic ranks are much less satisfactory and the di�erences among their

organic exposures can be negligible compared to the di�erence between the mainstream's and theirs.

We thus assume that the niche �rms' overall attention levels are determined by their sponsored

ranking, that is, 1 −
(

1− αiNk
)

(1− βj)
(

1− γiNk j
)

= 1 −
(

1− αiN
k
′

)
(1− βj)

(
1− γiN

k
′ j

)
for

any k, k
′ ∈ {1, ..., n − 1}. More speci�cally, for a niche �rm winning the jth sponsored slot, the

combined probability of its link (either organic or sponsored) being clicked is 1 − ψj . There are

m (≥ 2) sponsored slots and we only discuss the case in which m ≥ n. Similar analysis can be

applied to the case of m < n. Without loss of generality, we let the exposure of sponsored positions

monotonically decrease from the �rst to the last, that is, 0 < ψ1 < ... < ψn < 1.

Analysis and Results

We can derive the equilibrium pricing similarly as in the main model. The demand function facing

the niche �rm staying in the jth sponsored position, given M 's price pM , can be written as

Dj
N (p; pM ) =

1

n− 1
(1− ψj)SN (p, pM ) ,

where SN is de�ned by Eq.(1). Maximizing the pro�t function pDj
N (p; pM ) gives the optimal pricing.

Notice that the maximization problem is actually independent of ψj , which implies that all niche

�rms charge the same price in equilibrium. Given niche �rms' price pN , the demand function facing

M when it stays in the kth sponsored position can be written as

Dk
M (p; pN ) =

∑
i 6=k

1

n− 1
[ψiAM (p) + (1− ψi)SM (p, pN )]

= ψ̄−kAM (p) +
(
1− ψ̄−k

)
SM (p, pN ) ,



where ψ̄−k = 1
n−1

∑
i 6=k ψi. Maximizing the pro�t functions simultaneously, we can derive the

equilibrium prices (when M stays in the kth sponsored position) as follows.


p∗M = min{ 2−θ(1−ψ̄−k)

3(1−θ)(1−ψ̄−k)+4θψ̄−k
, 1}

p∗N =
θ+(1−θ)p∗M

2(1−θ) .

Therefore, the equilibrium pro�t functions can be derived accordingly:


πkM = π∗M

(
ψ̄−k, θ

)
π
j(k)
N = 1

n−1 (1− ψj) f
(
ψ̄−k, θ

)
,

where πkM is the equilibrium pro�t for theM �rm if it stays in the kth sponsored position, and π
j(k)
N

stands for the equilibrium pro�t of the N �rm staying in the jth sponsored position when M gets

the kth sponsored slot (j 6= k). Here, π∗M (ψ, θ) is the same as is de�ned in Table 2, while f (ψ, θ)

is de�ned as

f (ψ, θ) =


[1−θ2+θ(3θ−1)ψ]

2

(1−θ)[3(1−θ)(1−ψ)+4θψ]2
ψ < 1

3

1
4(1−θ) ψ ≥ 1

3 .

Before we derive the bidding equilibrium, we �rst summarize a result which will be useful in

the analysis of equilibrium bidding. In fact, the following result is a counterpart of Lemma 1 in the

oligopolistic case. It shows that the di�erence between the mainstream �rm's and the niche �rms'

incentives to improve their sponsored ranks decrease as the competence di�erence reduces (i.e., as

θ increases).

Lemma 2. π∗M

(
ψ
′
, θ
)
−π∗M

(
ψ
′′′
, θ
)
− 1
n−1 (1− x1) f

(
ψ
′′
, θ
)

+ 1
n−1 (1− x2) f

(
ψ
′
, θ
)
is decreasing

in θ, where 1 > ψ
′
> ψ

′′ ≥ ψ′′′ > 0 and 1 > x2 ≥ x1 > 0.

To derive the bidding equilibrium, we follow Edelman et al. (2007) and consider the locally

envy-free equilibrium in the generalized second-price auctions. In a locally envy-free equilibrium,

any advertiser does not want to exchange bids with the one ranked one position above it in the

sponsored list. We focus on the particular type of locally envy-free equilibrium studied by Edelman

et al. (2007), in which each advertiser bids an amount that equals its own payment plus its own value

di�erence between staying in the current position and moving one position up. In other words, each



advertiser's payment is equal to the negative externality that it imposes on all the other advertisers.

The equilibrium analysis is more complex in our setting because any change of M 's position will

change the values of all niche �rms in all positions.

We are particularly interested in two types of equilibria, namely, when the mainstream �rm wins

the �rst sponsored position, and when the niche �rms win the �rst n − 1 sponsored positions and

the mainstream �rm gets the last. Applying the results from Lemma 2, we show that when θ is

large, the latter may hold in equilibrium, and the former can be an equilibrium when θ is small,

which are similar to Proposition 1.

Proposition 8. Generically, there exist cuto�s θ̂ (ψ1, ..., ψn) and θ̃ (ψ1, ..., ψn), such that when

0 < θ < θ̂ (ψ1, ..., ψn), M winning the �rst sponsored position and all niche �rms staying in the

second to the nth positions is an equilibrium, and when θ̃ (ψ1, ..., ψn) < θ < 1
2 , all niche �rms

staying in the �rst n− 1 positions and M staying in the last is an equilibrium.

Proposition 8 reveals a similar pattern in the equilibrium bidding outcomes. With reasonable

market preference shares, although still weaker than the leading �rm, niche �rms have higher bidding

incentives and get better sponsored positions. Such outcome, which is not aligned with advertisers'

inherent competitive strength, re�ects the interplay between organic listing and sponsored bidding,

and the balance between the promotive and preventive e�ects. On the other hand, when niche

�rms are too weak, the leading �rm's preventive motivation dominates, making it occupy the top

sponsored position.

Given the similarity in the equilibrium bidding outcomes, the rest analysis and the main results

from the duopoly case can be expected to hold qualitatively when extended to the oligopoly case.

The following example illustrates the results.

Example 3. We consider the case with n = 3, ψ1 = .02, ψ2 = .15, and ψ3 = .20. As we can

show, when θ > .352, the two niche �rms bidding higher than the mainstream �rm is an equilibrium

in the co-listing case, whereas such an equilibrium cannot arise in the benchmark case for any θ.

If θ = .4, for example, then b1N > b2N = .0290 > b3M = .0045 is an equilibrium in the co-listing

case, while b1M > b2N = .0366 > b3N = .0098 is an equilibrium in the benchmark case. The co-

listing case generates higher social welfare, consumer surplus, sales diversity, but lower immediate

revenue for search engine than the benchmark case. More speci�cally, WC = .9644 > WB = .9288,



CSC = .1308 > CSB = .1011, GC = .2288 < GB = .2435, and IRC = .0335 < IRB = .0463.

Proofs

Proof of Lemma 2. To prove that the objective function is decreasing in θ is to prove

∂

∂θ
π∗M

(
ψ
′
, θ
)
− ∂

∂θ
π∗M

(
ψ
′′′
, θ
)

+
1

n− 1
(1− x2)

∂

∂θ
f
(
ψ
′
, θ
)
− 1

n− 1
(1− x1)

∂

∂θ
f
(
ψ
′′
, θ
)
< 0.

(25)

Recall that Lemma 1 shows that ∂2

∂ψ∂θπ
∗
M (ψ, θ) < 0. Since ψ

′
> ψ

′′′
, therefore, ∂

∂θπ
∗
M

(
ψ
′
, θ
)
−

∂
∂θπ
∗
M

(
ψ
′′′
, θ
)
< 0, that is, the �rst half of the LHS of Eq.(25) is negative. Also, we can show that

when θ ≥ 0.153, ∂2

∂ψ∂θf (ψ, θ) ≤ 0. Notice that ∂
∂θf (ψ, θ) > 0. Therefore,

(1− x2)
∂

∂θ
f
(
ψ
′
, θ
)
− (1− x1)

∂

∂θ
f
(
ψ
′′
, θ
)
≤ (1− x1)

[
∂

∂θ
f
(
ψ
′
, θ
)
− ∂

∂θ
f
(
ψ
′′
, θ
)]
≤ 0.

Thus, when θ ≥ 0.153, the second half of the LHS of Eq.(25) is also non-positive, which implies

that Eq.(25) holds.

When θ < 0.153, the second half of the LHS of Eq.(25) could be positive so that we need to

compare the magnitudes of the two parts. We discuss the case in which ψ
′′′ ≤ ψ

′′
< ψ

′ ≤ 1
3 , the

other cases can be easily proved. By mean value theorem, we have

∂

∂θ
π∗M

(
ψ
′
, θ
)
− ∂

∂θ
π∗M

(
ψ
′′′
, θ
)

=
∂2

∂ψ∂θ
π∗M

(
ψ̂, θ

)(
ψ
′ − ψ′′′

)
,

where ψ̂ is some value between ψ
′
and ψ

′′′
. Similarly,

1

n− 1
(1− x2)

∂

∂θ
f
(
ψ
′
, θ
)
− 1

n− 1
(1− x1)

∂

∂θ
f
(
ψ
′′
, θ
)
≤ 1

n− 1
(1− x1)

[
∂

∂θ
f
(
ψ
′
, θ
)
− ∂

∂θ
f
(
ψ
′′
, θ
)]

=
1

n− 1
(1− x1)

∂2

∂ψ∂θ
f
(
ψ̃, θ

)(
ψ
′ − ψ′′

)
,

where ψ̃ is some value between ψ
′
and ψ

′′
. Since ψ

′ −ψ′′′ ≥ ψ′ −ψ′′ , we can conclude that Eq.(25)

holds if we can show − ∂2

∂ψ∂θπ
∗
M

(
ψ̂, θ

)
> ∂2

∂ψ∂θf
(
ψ̃, θ

)
. As we can verify, both ∂2

∂ψ∂θπ
∗
M (ψ, θ) and



∂2

∂ψ∂θf (ψ, θ) are decreasing in ψ for ∀ψ ∈
(
0, 1

3

)
when θ < 0.153. Therefore,

∂2

∂ψ∂θ
π∗M

(
ψ̂, θ

)
+

∂2

∂ψ∂θ
f
(
ψ̃, θ

)
<

∂2

∂ψ∂θ
π∗M (0, θ) +

∂2

∂ψ∂θ
f (0, θ)

= −
2
(
2 + 13θ − 3θ2 + θ3

)
27 (1− θ)3

< 0.

Altogether, we have shown that Eq.(25) holds for ∀θ ∈
(
0, 1

2

)
, which means the objective function

is decreasing in θ.

Proof of Proposition 8. (i) Consider the locally envy-free equilibrium in which the n − 1 niche

�rms' bids (labeled such that bnN < bn−1
N < ... < b2N ) are

bnN = π
n−1(1)
N − πn(1)

N

biN = π
i−1(1)
N − πi(1)

N + bi+1
N , i = 3, ..., n− 1

b2N = max{π1(2)
N − π2(1)

N , 0}+ b3N

and the mainstream �rm bids any amount greater than b2N . As a result, M wins the �rst position

and niche �rms stay in the 2nd through the nth positions.

Now we investigate under what conditions the above bidding strategy pro�le is indeed an equi-

librium. It is easy to see that all niche �rms have no pro�table deviations. To ensure no pro�table

deviation of M , π1
M − b2N ≥ πkM − b

k+1
N has to be satis�ed for all k = 2, ..., n (Let bn+1

N = 0). In

other words, the following conditions have to be satis�ed.

π1
M −

(
max{π1(2)

N , π
2(1)
N } − πn(1)

N

)
≥ πkM −

(
π
k(1)
N − πn(1)

N

)
, k = 2, ..., n;

or equivalently, 
π1
M − π

1(2)
N ≥ πkM − π

k(1)
N k = 2, ..., n

π1
M − π

2(1)
N ≥ πkM − π

k(1)
N k = 2, ..., n

,



which are further equivalent to that


π∗M

(
ψ̄−1, θ

)
− π∗M

(
ψ̄−k, θ

)
+ 1

n−1 (1− ψk) f
(
ψ̄−1, θ

)
− 1

n−1 (1− ψ1) f
(
ψ̄−2, θ

)
≥ 0

π∗M
(
ψ̄−1, θ

)
− π∗M

(
ψ̄−k, θ

)
+ 1

n−1 (1− ψk) f
(
ψ̄−1, θ

)
− 1

n−1 (1− ψ2) f
(
ψ̄−1, θ

)
≥ 0

holds for all k = 2, ..., n. By Lemma 2, the LHS of the �rst inequality is decreasing in θ. Also, it

is easy to show that the LHS of the second inequality is decreasing in θ, given that ∂
∂θf (ψ, θ) > 0.

As a result, as long as the values of {ψi}ni=1 satisfy


π∗M

(
ψ̄−1, 0

)
− π∗M

(
ψ̄−k, 0

)
+ 1

n−1 (1− ψk) f
(
ψ̄−1, 0

)
− 1

n−1 (1− ψ1) f
(
ψ̄−2, 0

)
> 0

π∗M
(
ψ̄−1, 0

)
− π∗M

(
ψ̄−k, 0

)
+ 1

n−1 (1− ψk) f
(
ψ̄−1, 0

)
− 1

n−1 (1− ψ2) f
(
ψ̄−1, 0

)
> 0

for k = 2, ..., n, which is a loose parametric condition that can be satis�ed under most values of

{ψi}ni=1, we can conclude that there exists θ̂ (ψ1, ..., ψn) such that when 0 < θ < θ̂ (ψ1, ..., ψn), the

described bidding strategy pro�le is an equilibrium.

(ii) Similarly, consider the locally envy-free equilibrium in which the n − 1 niche �rms' bids

(labeled such that bn−1
N < bn−2

N < ... < b1N ) are
bn−1
N = π

n−2(n)
N − πn−1(n)

N + bM

biN = π
i−1(n)
N − πi(n)

N + bi+1
N , i = 2, ..., n− 2

b1N > b2N

and the mainstream �rm bids bM = πn−1
M − πnM . As a result, the niche �rms stay in the �rst n− 1

positions and M stays in the last one.

To see under what conditions the above bidding strategy pro�le is indeed an equilibrium, we need

to ensure that any niche �rm does not have pro�table deviation, such that π
n(n−1)
N ≤ πk(n)

N − bk+1
N =

π
n−1(n)
N −

(
πn−1
M − πnM

)
(k = 1, ..., n− 1), as well as that M does not have pro�table deviation, such

that πkM − bkN ≤ πnM for k = 2, ..., n − 1. (Note that no deviation to the �rst position for M can



easily hold as long as b1N is high enough.) We can organize these conditions as


πn−1
M − πnM + π

n(n−1)
N − πn−1(n)

N ≤ 0

πkM − π
n−1
M + π

n−1(n)
N − πk−1(n)

N ≤ 0, k = 2, ..., n− 1;

or equivalently,


π∗M

(
ψ̄−(n−1), θ

)
− π∗M

(
ψ̄−n, θ

)
+ 1

n−1 (1− ψn) f
(
ψ̄−(n−1), θ

)
− 1

n−1 (1− ψn−1) f
(
ψ̄−n, θ

)
≤ 0

π∗M
(
ψ̄−k, θ

)
− π∗M

(
ψ̄−(n−1), θ

)
+ 1

n−1 (1− ψn−1) f
(
ψ̄−n, θ

)
− 1

n−1 (1− ψk−1) f
(
ψ̄−n, θ

)
≤ 0,

where k = 2, ..., n − 1. By Lemma 2, the LHS of the �rst inequality is decreasing in θ. Also, it is

easy to show that the LHS of the second inequality is decreasing in θ, given that ∂
∂θf (ψ, θ) > 0. As

a result, as long as the values of {ψi}ni=1 satisfy


π∗M

(
ψ̄−(n−1),

1
2

)
− π∗M

(
ψ̄−n,

1
2

)
+ 1

n−1 (1− ψn) f
(
ψ̄−(n−1),

1
2

)
− 1

n−1 (1− ψn−1) f
(
ψ̄−n,

1
2

)
< 0

π∗M
(
ψ̄−k,

1
2

)
− π∗M

(
ψ̄−(n−1),

1
2

)
+ 1

n−1 (1− ψn−1) f
(
ψ̄−n,

1
2

)
− 1

n−1 (1− ψk−1) f
(
ψ̄−n,

1
2

)
< 0,

for k = 2, ..., n−1, which is not di�cult to be satis�ed under most values of {ψi}ni=1, we can conclude

that there exists θ̃ (ψ1, ..., ψn) such that when θ̃ (ψ1, ..., ψn) < θ < 1
2 , the described bidding strategy

pro�le is an equilibrium.


