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This paper studies the effects of various types of online advertisements on purchase conversion by capturing the
dynamic interactions among advertisement clicks themselves. It is motivated by the observation that certain

advertisement clicks may not result in immediate purchases, but they stimulate subsequent clicks on other
advertisements, which then lead to purchases. We develop a novel model based on mutually exciting point
processes, which consider advertisement clicks and purchases as dependent random events in continuous time. We
incorporate individual random effects to account for consumer heterogeneity and cast the model in the Bayesian
hierarchical framework. We construct conversion probability to properly evaluate the conversion effects of
online advertisements. We develop simulation algorithms for mutually exciting point processes to compute the
conversion probability and for out-of-sample prediction. Model comparison results show the proposed model
outperforms the benchmark models that ignore exciting effects among advertisement clicks. Using a proprietary
data set, we find that display advertisements have relatively low direct effect on purchase conversion, but they are
more likely to stimulate subsequent visits through other advertisement formats. We show that the commonly used
measure of conversion rate is biased in favor of search advertisements and underestimates the conversion effect
of display advertisements the most. Our model also furnishes a useful tool to predict future purchases and
advertisement clicks for the purpose of targeted marketing and customer relationship management.
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1. Introduction
As the Internet grows to become the leading advertis-
ing medium, firms invest heavily to attract consumers
to visit their websites through advertising links in
various formats, among which search advertisements
(i.e., sponsored links displayed on the search engine
results pages) and display advertisements (i.e., digital
graphics linking to the advertiser’s website embed-
ded in Web content pages) are the two leading online
advertising formats (Interactive Advertising Bureau
and PricewaterhouseCoopers 2012). Thanks to the
advancement of information technology, which makes
tremendous individual-level online clickstream data
available, business analytics of how to evaluate the
effectiveness of these different formats of online adver-
tisements (ads) has been attracting constant academic
and industrial interest. Marketing researchers and
practitioners are especially interested in the conversion
effect of each type of online advertisement, that is,
given an individual consumer clicked on a certain
type of advertisement, what is the probability of her

making a purchase (or performing certain actions such
as registration or subscription) thereafter.

The most common measure of conversion effects is
conversion rate, which is the percentage of the adver-
tisement clicks that directly lead to purchases among
all advertisement clicks of the same type. This simple
statistic provides an intuitive assessment of advertising
effectiveness. However, it overemphasizes the effect of
the “last click” (i.e., the advertisement click directly
preceding a purchase) and completely ignores the
effects of all previous advertisement clicks, which natu-
rally leads to biased estimates. Existing literature has
developed more sophisticated models to analyze the
conversion effects of website visits and advertisement
clicks (e.g., Moe and Fader 2004, Manchanda et al.
2006). These models account for the entire clickstream
history of individual consumers and model the pur-
chases as a result of the accumulative effects of all
previous clicks, which can more precisely evaluate the
conversion effects and predict the purchase probability.
Nevertheless, because existent studies on conversion
effects focus solely on how nonpurchase activities
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Figure 1 Illustrative Examples of the Interactions Among Ad Clicks

t1
� t3

� t4
�

Time

Search Search Purchase
B

t2
�

Search

t1 t2 t3 Time

Display Search Purchase
A

(e.g., advertisement clicks, website visits) affect the
probability of purchasing, they usually consider the
nonpurchase activities as deterministic data rather than
stochastic events and neglect the dynamic interactions
among these activities themselves, which motivates us
to fill this gap.

To illustrate the importance of capturing the dynamic
interactions among advertisement clicks when studying
their conversion effects, let us consider a hypothetical
example illustrated in Figure 1. Suppose consumer A
saw firm X’s display advertisement for its product
when browsing a webpage, clicked on the ad, and
was linked to the product webpage at time t1. Later,
she searched for firm X’s product in a search engine
and clicked on the firm’s search advertisement there
at time t2. Shortly afterward, she made a purchase
at firm X’s website at time t3. In this case, how shall
we attribute this purchase and evaluate the respective
conversion effects of the two advertisement clicks? If
we attribute the purchase solely to the search advertise-
ment click, like how the conversion rate is computed,
we ignore the fact that the search advertisement click
might not have occurred without the initial click on the
display advertisement. In other words, the occurrence
of the display ad click at time t1 is likely to increase the
probability of the occurrence of the subsequent adver-
tisement clicks, which eventually lead to a purchase.
Without considering such an effect, we might under-
value the first click on the display ad and overvalue
the next click on the search ad. Therefore, to properly
evaluate the conversion effects of different types of
advertisement clicks, it is imperative to account for
the exciting effects between advertisement clicks, that
is, how the occurrence of an earlier advertisement
click affects the probability of occurrence of subse-
quent advertisement clicks. Neglecting the exciting
effects between different types of advertisement clicks,
the simple measurement of conversion rates might
easily underestimate the conversion effects of those
advertisements that tend to catch consumers’ attention
initially and trigger their subsequent advertisement
clicks but are less likely to directly lead to a purchase,
for instance, the display advertisements.

In addition to the exciting effects between different
types of advertisement clicks, neglecting the exciting
effects between the same type of advertisement clicks

may also lead to underestimation of their conversion
effects. Consider consumer B in Figure 1, who clicked
on search advertisements three times before making
a purchase at time t′4. If we take the occurrence of
advertisement clicks as given and consider only their
accumulative effects on the probability of purchasing,
like the typical conversion models, we may conclude
that it takes the accumulative effects of three search
advertisement clicks for consumer B to make the pur-
chase decision, so each click contributes one third.
Nevertheless, it is likely that the first click at t′1 stimu-
lates the subsequent two clicks, all of which together
lead to the purchase at time t′4. When we consider
such exciting effects, the (conditional) probability of
consumer B making a purchase eventually given he
clicked on a search advertisement at time t′1 clearly
needs to be reevaluated.

This study aims to develop an innovative model-
ing approach that captures the exciting effects among
advertisement clicks to contribute to the attribution
models for properly evaluating the effectiveness of
online advertisements using individual-level online
clickstream data. To properly characterize the dynamics
of consumers’ online behaviors, the model also needs
to account for the following unique properties and pat-
terns of online advertisement clickstream and purchase
data. First, different types of online advertisements
have their distinct natures and therefore differ greatly
in their probabilities of being clicked, their impacts on
purchase conversions, and their interactions with other
types of advertisements as well. Therefore, unlike the
typical univariate approach in modeling the conver-
sion effects of website visits, to study the conversion
effects of various types of online advertisements from
a holistic perspective, the model needs to account for
the multivariate nature of nonpurchase activities.

Second, consumers vary from individual to individ-
ual in terms of their online purchase and ad clicking
behaviors, which could be affected by their inherent
purchase intention, exposure to marketing communica-
tion tools, or simply preference for one advertising
format over another. Because most of these factors
are usually unobservable in online clickstream data,
it is important to incorporate consumers’ individual
heterogeneity in the model.

Third, online clickstream data often contain the pre-
cise occurrence time of various activities. Although
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the time data are very informative about the under-
lying dynamics of interest, most existing modeling
approaches have yet to adequately exploit such infor-
mation. Prevalent approaches to address the time effects
usually involve aggregating data by an arbitrary fixed
time interval or considering the activity counts only, but
discarding the actual time of occurrence. It is appealing
to cast the model in a continuous-time framework to
duly examine the time effects between advertisement
clicks and purchases. Notice that the effects of a previ-
ous ad click on later ones and purchases should decay
over time. In other words, an ad click one month ago
should have less direct impact on a purchase at present
compared to a click several hours ago. Moreover, some
advertisement formats may have more lasting effects
than others, so the decaying effects may vary across dif-
ferent advertisement formats. Therefore, incorporating
the decaying effects of different types of advertisement
clicks in the model is crucial in accurately evaluating
their conversion effects.

Furthermore, a close examination of the online adver-
tisement click and purchase data set used for this study
reveals noticeable clustering patterns, that is, adver-
tisement clicks and purchases tend to concentrate in
shorter time spans and there are longer time intervals
without any activity, which is also termed clumpy data
in statistics literature (e.g., Zhang et al. 2013).1 If we
are to model advertisement clicks and purchases as a
stochastic process, the commonly used Poisson process
model will perform poorly, because its intensity at any
time is independent of its own history, and such a
memoryless property implies no clustering at all (Cox
and Isham 1980). For this reason, a more sophisticated
model with history-dependent intensity functions is
especially desirable.

In this paper, we develop a stochastic model for
online purchasing and advertisement clicking that
incorporates mutually exciting point processes with
individual heterogeneity in a Bayesian hierarchical
modeling framework. The mutually exciting point
process is a multivariate stochastic process in which
different types of advertisement clicks and purchases
are modeled as different types of random points in
continuous time. The occurrence of an earlier point
affects the probability of occurrence of later points
of all types so that the exciting effects among all
advertisement clicks are well captured. As a result, the
intensities of the point process, which can be interpreted
as the instant probabilities of point occurrence, depend
on the previous history of the process. Moreover, the

1 Using the clumpiness metric (entropy value) proposed by Zhang
et al. (2013), we find the median clumpiness of the individuals in our
data sample is 0.50. In comparison, the median clumpiness would be
0.17 if the click and purchase data were generated by memoryless
Poisson processes.

exciting effects are modeled to be decaying over time in
a natural way. The hierarchical structure of the model
allows each consumer to have her own propensity for
clicking on various advertisements and purchasing so
that consumers’ individual processes are heterogeneous.

Our model offers a novel method to more precisely
evaluate the effectiveness of various formats of online
advertisements. In particular, the model manages to
capture the exciting effects among advertisement clicks
so that advertisement clicks, instead of being determin-
istic data as given, are also stochastic events dependent
on the past occurrences. In this way, even for those
advertisements that have little direct effect on pur-
chase conversion but may trigger subsequent clicks on
other types of advertisements that eventually lead to
conversion, our model can properly account for their
contributions. Compared with the benchmark model
that ignores all the exciting effects among advertise-
ment clicks, our proposed model outperforms it to a
considerable degree in terms of model fit, which indi-
cates that the mutually exciting model better captures
the complex dynamics of online advertising response
and purchase processes.

Based on our model and its Bayesian estimation
results, we construct conversion probability to better
evaluate the conversion effects of different types of
online advertisements. We find that the commonly used
measure of conversion rate is biased in favor of search
advertisements by overemphasizing the “last click”
effects and underestimates the effectiveness of display
advertisements the most severely. We show that display
advertisements have little direct effect on purchase
conversion, but are likely to stimulate visits through
other advertising channels. As a result, ignoring the
mutually exciting effects between different types of
advertisement clicks undervalues the efficacy of display
advertisements the most. Likewise, ignoring the self-
exciting effects leads to significant underestimation
of search advertisement’s conversion effects. A more
accurate understanding of the effectiveness of various
online advertising formats can help firms rebalance
their marketing investment and optimize their portfolio
of advertising spending.

Our model also better predicts individual consumers’
online behavior based on their past behavioral data.
Compared with the benchmark model that ignores all
the exciting effects, incorporating the exciting effects
among all types of online advertisements improves the
model predictive power for consumers’ future ad click
and purchase patterns. Because our modeling approach
allows us to predict both purchase and nonpurchase
activities in the future, it thus furnishes a useful tool
for marketing managers in targeted advertising and
customer relationship management.

In addition to the substantive contributions, this
paper also makes several methodological contributions.
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We model the dynamic interactions among online
advertisement clicks and their effects on purchase
conversion with a mutually exciting point process. To
the best of our knowledge, we are the first to apply the
mutually exciting point process model in a marketing-
or ecommerce-related context. We are also the first to
incorporate individual random effects into the mutually
exciting point process model in the applied econometric
and statistic literature. This is the first study that
successfully applies Bayesian inference using Markov
chain Monte Carlo (MCMC) method to a mutually
exciting point process model, which enables us to fit a
more complex hierarchical model with random effects
in correlated stochastic processes. In evaluating the
conversion effects for different online advertisement
formats and predicting consumers’ future behaviors,
we develop algorithms to simulate the point processes,
which extend the thinning algorithm in Ogata (1981)
to mutually exciting point processes with parameter
values sampled from posterior distributions.

The rest of this paper is organized as follows. In §2,
we survey the related literature. We then provide an
overview of the data used for this study with summary
statistics in §3. In §4, we construct the model and
explore some of its theoretical properties. In §5, we
discuss the inference and present the estimation results,
which will be used to evaluate the conversion effects
of different types of online advertisements and predict
future consumer behaviors in §6. We also extend the
model to incorporate additional data in §6. We conclude
this paper with discussions in §7.

2. Literature Review
This study is related to various streams of existing lit-
erature on online advertising, consumer Web browsing
behaviors, and their effects on purchase conversion.
Our modeling approach using the mutually exciting
point process also relates to existing theoretical and
applied studies in statistics and probability. In addition,
the rich literature on consumer behavior theory and
cognitive psychology provides behavioral support for
our model specifications. We next review the relevant
literature in these domains.

Our work is related to the literature on the dynamics
of online advertising exposure, website visit, web-
page browsing, and purchase conversion. For example,
Manchanda et al. (2006) study the effects of banner
advertising exposure on the probability of repeated
purchase using a survival model. Moe and Fader (2004)
propose a model of accumulative effects of website
visits to investigate their effects on purchase conversion.
Both studies consider the conversion effects of a single
type of activity and focus on the effects of the non-
purchase activities on purchase conversion, whereas
we study the effects of various types of online adver-
tisement clicks and consider the dynamic interactions

among nonpurchase activities as well. Montgomery
et al. (2004) consider the sequence of webpage views
within a single site-visit session. They develop a Markov
model in which, given the occurrence of a webpage
view, the type of the webpage being viewed is affected
by the type of the last webpage view. In contrast, we
consider multiple visits over a long period of time
and capture the actual time effect between different
activities. To account for correlations among multi-
variate activities, Park and Fader (2004) apply the
Sarmanov family of bivariate distributions to model
the dependence of website visit durations across two
different websites. Danaher and Smith (2011) further
demonstrate that a more general class of copula models
can be used to model multivariate distributions in
various marketing applications. As we discuss in more
detail in §7.1, our model based on the mutually exciting
point process offers a new approach to induce correla-
tion among all time durations between activities in a
parsimonious way. Most recently, an emerging stream
of research is dedicated to attribution modeling, which
demonstrates that the simplistic approach of attributing
conversion to the very last stop is erroneous (e.g., Li
and Kannan 2014, Abhishek et al. 2013, Zantedeschi
et al. 2013). Our paper enriches this increasingly vibrant
stream of literature with a novel modeling framework.

In the area of statistics and probability, mutually
exciting point processes were first proposed in Hawkes
(1971a, b), where their theoretical properties are studied.
Statistical models using Hawkes’ processes, includ-
ing the simpler version of self-exciting processes, are
applied in seismology (e.g., Ogata 1998), sociology (e.g.,
Mohler et al. 2011), and finance (e.g., Ait-Sahalia et al.
2013, Bowsher 2007). These studies do not consider
individual heterogeneity, and the estimation is usually
conducted using method of moments or maximum
likelihood estimation, whose asymptotic consistency
and efficiency is studied in Ogata (1978). Our paper is
thus the first to incorporate random coefficients into
the mutually exciting point process model, cast it in
a hierarchical framework, and obtain Bayesian infer-
ence for it. Bijwaard et al. (2006) proposes a counting
process model for interpurchase duration, which is
closely related to our model. A counting process is
one way of representing a point process (e.g., Cox and
Isham 1980). The model in Bijwaard et al. (2006) is a
nonhomogeneous Poisson process where the depen-
dence on the purchase history is introduced through
covariates. Our model is not a Poisson process where
the dependence on history is parsimoniously modeled
by making the intensity directly as a function of the
previous path of the point process itself. Bijwaard et al.
(2006) also incorporates unobserved heterogeneity in
the counting process model and estimates it using the
expectation–maximization algorithm. Our Bayesian
inference using the MCMC method not only provides
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an alternative and efficient way to estimate this type
of stochastic model, but it facilitates straightforward
simulation and out-of-sample prediction as well.

2.1. Conceptual Background
A large volume of behavioral literature on consumer
information processing and responses to advertising
provides theories and evidence supporting our quantita-
tive model formulation. First, a consumer’s prior clicks
on one format of online advertisement could increase
the probability that she clicks on the advertisements in
either the same or a different format. Studies on process-
ing fluency show that prior exposures to advertising
can enhance both perceptual and conceptual fluency
(e.g., Jacoby and Dallas 1981, Shapiro 1999). Perceptual
fluency refers to the ease with which consumers can
identify a target stimulus on subsequent encounters
and involves the processing of physical features (such
as modality, shape, and color), whereas conceptual
fluency refers to the ease with which the target comes
to consumers’ minds subsequently and involves the
processing of meanings (Lee and Labroo 2004). Enhance-
ment in these two dimensions therefore implies the
increase of the likelihood of the consumer recognizing
and clicking on the ads either in the same format with
similar physical features or in different formats that
pertain to the same product information. Additionally,
extant studies find that prior ad exposure increases
the probability of consideration-set membership of the
advertised product (e.g., Lee 2002, Nedungadi 1990,
Shapiro et al. 1997), which makes consumers more
willing to consult ads that they would otherwise have
ignored for informational purposes (Engel et al. 1995).
Such positive effects have been shown robust for both
stimulus-based and memory-based consideration-set
formation (Lee 2002, Nedungadi 1990), suggesting the
increase in the probability of the consumer clicking on
the ads that either are physically presented or require
active searches.

Furthermore, it is also well documented that
enhanced perceptual and conceptual fluency positively
influence consumers’ affective responses (e.g., Anand
and Sternthal 1991, Lee and Labroo 2004). Increased
liking of the product, on one hand, will positively
influence the attention and reception consumers give
to marketing communications; on the other hand, it
will directly increase the probability of purchase (Engel
et al. 1995). Together with the above literature on the
consideration-set inclusion because of prior exposure to
advertisements, we argue that a consumer’s successive
clicks on various formats of online advertisements
jointly contribute to the increase in the probability of
purchase conversion.

The theories and evidence discussed above suggest
that prior exposures to advertising positively influence
subsequent clicks and purchases; meanwhile, such

effects are subject to decay over time. Cognitive psy-
chology provides theories explaining why memory
traces fade with the passage of time (Anderson and
Milson 1989). Evidence is well documented that the
probability of retrieval failure increases as a function of
time, in many cases quite rapidly (e.g., Brown 1958,
Muter 1980). Meanwhile, various features of the mar-
keting communications being processed (e.g., modality
of information, interrelations among components) can
influence people’s physiologic reactions that affect reten-
tion and retrieval (e.g., Janiszewski 1990, Rothschild
and Hyun 1990), suggesting that the lasting effects
could vary with different advertising formats.

Given the dynamic interaction among different for-
mats of advertising and purchase discussed above,
we hypothesize that a model of purchase conversion
that fails to account for the interactions among various
types of advertising will lead to biased estimation
of the conversion effects of advertising and inferior
predictive capability.

3. Data Overview
We obtained the data for this study from a major
manufacturer and vendor of consumer electronics (e.g.,
computers and accessories) that sells most of its prod-
ucts online through its own website.2 The firm records
consumers’ responses to its online advertisements in
various formats. Every time a consumer clicks on one
of the firm’s online advertisements and visits the firm’s
website through it, the exact time of the click and the
type of the online advertisement being clicked are
recorded. Consumers are identified by user IDs that
are primarily based on the tracking cookies stored on
their computers.3 The firm also provided the purchase
data (including the time of a purchase) associated with
these user IDs. By combining the advertisement click
and purchase data, we form a panel of individuals
who have visited the firm’s website through advertise-
ments at least once, which comprises the entire history
of clicking on different types of advertisements and
purchasing by each individual.

2 We are unable to reveal the identity of the firm because of a
nondisclosure agreement.
3 The firm constructs the so-called generalized user IDs to identify
users by linking the cookie IDs with other user identity information
(such as user accounts and order IDs) whenever available. Although
mitigated by this approach, the general limitations of cookie-based
data still exist in our data set (Dreze and Zufryden 1998). Ideally, more
advanced technology capable of identifying the same user across
multiple devices would be preferable for more precise estimation
results. Nevertheless, given that the technological reliability of
cookie-based tracking is robust, and general users are increasingly
receptive to the use of tracking cookies (Specific Media 2011), cookie
data are commonly used in the literature studying consumer online
behavior (e.g., Bucklin and Sismeiro 2003, De et al. 2010, Manchanda
et al. 2006).
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One unique aspect of our data is that, instead of
being limited to one particular type of advertisement,
our data offer a holistic view covering most major
online advertising formats, which allows us to study
the dynamic interactions among different types of
advertisements. Because we are especially interested in
the two leading formats of online advertising, namely,
search and display advertisements, we categorize the
advertisement clicks in our data set into three categories:
search, display, and other. Search advertisements, also
called sponsored search or paid search advertisements,
refer to the sponsored links displayed by search engines
on their search result pages alongside the general
search results. Display advertisements, also called
banner advertisements, refer to the digital graphics
that are embedded in Web content pages and link to
the advertiser’s website. The “other” category includes
all the remaining types of online advertisements except
search and display, such as classified advertisements
(i.e., textual links included in specialized online listings
or Web catalogs) and affiliate advertisements (i.e.,
referral links provided by partners in affiliate networks).
Notice that our data only contain visits to the firm’s
website through advertising links, and we do not have
data on consumers’ direct visits (such as by typing
the URL of the firm’s website directly in the Web
browser) or visits through organic search results (i.e.,
general search results on search engine results pages).
Therefore, we focus on the conversion effects of online
advertisements rather than the general website visits.
We will discuss data availability and limitations in
more detail in §7.2.

For this study, we use a random sample of 12,000
user IDs spanning a four-month period from April 1 to
July 31, 2008. We use the first three months for estima-
tion and leave the last month as the holdout sample
for out-of-sample validation. The data of the first three
months contain 17,051 ad clicks and 457 purchases.
Table 1 presents a detailed breakdown of different
types of ad clicks. There are 2,179 individuals who
have two or more ad clicks within the first three
months, among whom 26.3% clicked on multiple types
of advertisements.

We first perform a simple calculation of the conver-
sion rates for different online advertisements, which
are shown in Table 1. In calculating the conversion
rates, we consider a certain ad click leads to a con-
version if it is succeeded by a purchase of the same

Table 1 Data Description

Number of Percentage of
ad clicks ad clicks (%) Conversion rate

Search 6,886 40.4 0.01990
Display 3,456 20.3 0.00203
Other 6,709 39.3 0.01774

individual within one day;4 we then divide the number
of the ad clicks that lead to conversion by the total
number of the ad clicks of the same type. Because of
the nature of different types of advertisements, it is not
surprising that their conversion rates vary significantly.
The conversion rates presented in Table 1 are consistent
with the general understanding in industry that search
advertising leads all Internet advertising formats in
terms of conversion rate, whereas display advertising
has much lower conversion rates.5 Nevertheless, as was
discussed earlier, the simple calculation of conversion
rate attributes every purchase solely to the most recent
ad click preceding the purchase. Naturally, it would be
biased against those advertisements that are not likely
to lead to immediate purchase decisions (e.g., display
advertisements).

To further obtain intuition about the interacting
dynamics among different types of advertisements
and purchases before starting the modeling analysis,
we summarize the strings of ad click and purchase
sequences and perform some descriptive analysis.
Because we are interested in how ad clicks could
influence each other and together lead to conversion,
we focus on those individuals with multiple ad clicks
and purchase as well. We draw from the original data
a random sample of 10,000 individuals who have at
least two ad clicks and a purchase from April through
June, 2008. We then summarize the strings of ad click
and purchase sequences for all these individuals and
obtain the counts for each unique sequence pattern.
Table 2 presents the most frequent sequences.

A scrutiny of Table 2 reveals several noteworthy
data patterns. First, sequences involving repeating
clicks on the same types of ads before making a pur-
chase are very common, indicating the imperative to
account for the interactions among the same types of
advertisements. Second, there is also a considerable
portion that involves one type of ad click succeeded by
another type of ad click, which indicates the necessity
to capture the interactions among different types of
advertisements as well. Third, display ads appear to be
more likely to excite the other two types of ads than the
other way around. Note that the number of display ad
clicks is relatively low in absolute terms, as is shown in
Table 1. When focusing on the sequences that contain
display ad clicks, we can see that the sequences of
“DSP” and “DOP” are more frequent than “SDP,” and
“ODP” is absent from the top list. To explore further

4 As we can show, choosing a different time interval longer or shorter
than one day (e.g., several hours, a few days) delivers essentially
the same outcomes with regard to conversion rate and conversion
probability, which will be discussed in §6.1.
5 Industry reports show that search ads’ conversion rates vary
with a median of 3.5% (MarketingSherpa 2012), whereas the aver-
age conversion rates for display ads lie between 0.15% and 0.2%
(MediaMind 2010).
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Table 2 Summary of Ad Click and Purchase Sequences

Rank Sequence Count Rank Sequence Count

1 OOP 11920 15 DOP 87
2 SSP 11781 16 SOOP 83
3 OOOP 886 17 SDP 79
4 SSSP 635 18 OOOOOOOOP 75
5 OOOOP 478 19 SSSSSSP 71
6 SOP 327 20 DDDP 63
7 OOOOOP 287 0 0 0 0 0 0 0 0 0

8 SSSSP 274
9 DDP 193
10 OOOOOOP 189 Count 1 Count 2 Ratio (%)
11 OSP 166 Search 1,199 5,032 23.8
12 SSSSSP 145 Display 418 1,323 31.6
13 OOOOOOOP 119 Other 811 6,237 13.0
14 DSP 98

Notes. S, search ad click; D, display ad click; O, other ad click; P, purchase.
Count 1 is the number of sequences that start with the particular type of ad
click and also contain a different type of ad click. Count 2 is the number of all
the sequences that contain the particular type of ad click.

along this line, we parse all sequences and calculate the
percentage of the sequences that start with a particular
type of ad click and contain a different type of ad click
afterward among all the sequences that contain this
particular type of ad click, as is shown in the lower-
right panel of Table 2. The highest ratio for display
ads thus suggests that ignoring the interactions among
different types of ads could result in underestimating
the conversion effect of display ads the most severely.

4. Model Development
To capture the interacting dynamics among different
online advertising formats to properly evaluate their
conversion effects, we propose a model based on
mutually exciting point processes. We also account
for heterogeneity among individual consumers, which
casts our model in a hierarchical framework. In this
section, we first provide a brief overview of mutually
exciting point processes and then specify our proposed
model in detail.

4.1. Mutually Exciting Point Processes
A point process is a type of stochastic process that
models the occurrence of events as a series of random
points in time or geographical space. For example, in
the context of this study, a click on an online adver-
tisement or a purchase can be modeled as a point
occurring along the time line. We can describe such
a point process by N4t5, which is an increasing non-
negative integer-valued counting process such that
N4t25−N4t15 is the total number of points that occurred
within the time interval 4t11 t27. Most point processes
can be fully characterized by the conditional intensity
function defined as follows (Daley and Vere-Jones 2003):

�4t �Ht5= lim
ãt→0

Pr8N 4t +ãt5−N4t5 > 0 �Ht9

ãt
1 (1)

where Ht is the history of the point process given the
realization of the stochastic process up to time instant t,
which includes all information and summary statistics
before t (e.g., all points occurred and their respective
occurrence times).6 The intensity measures the prob-
ability of instantaneous point occurrence given the
previous realization. By the definition of Equation (1),
given the event history Ht , the probability of a point
occurring within 4t1 t +ãt7 is �4t � Ht5ãt. Note that
�4t �Ht5 is always positive by definition.

Hawkes (1971a, b) first systematically studied a class
of point processes, namely, the mutually exciting point
processes, in which past events affect the probability
of future event occurrence, and different series of
events interact with each other. A mutually exciting
point process is a multivariate point process composed
of multiple univariate point processes (or marginal
processes), often denoted as N4t5= 6N14t51 0 0 0 1NK4t57,
such that the conditional intensity function for each
marginal process can be written as

�k4t �Ht5=�k+

K
∑

j=1

∫ t

−�

gjk4t−u5dNj4u51 �k>00 (2)

Here gjk4t −u5 is the response function capturing the
effect of the past occurrence of a type j point at time u
on the probability of a type k point occurring at time t
(for u < t). The most common specification of the
response function takes the form of exponential decay
such that

gjk4�5= �jke
−�jk�1 �jk > 01�jk > 00 (3)

As is indicated by Equation (2), the intensity for the
type k marginal process, �k4t �Ht5, is determined by the
accumulative effects of the past occurrence of points of
all types (not only the type k points, but also points
of the other types), and meanwhile, such exciting
effects decay over time, as captured by Equation (3).
In other words, in a mutually exciting point process,
the intensity for each marginal process at any time
instant depends on the entire history of all the marginal
processes. For this reason, the intensity itself is actually
a random process, depending on the realization of the
point process in the past.

It is worth noting that the commonly used Poisson
process is a special point process such that the intensity
does not depend on the history. The most common
Poisson process is homogeneous, which means the
intensity is constant over the entire process; that is,
�4t �Ht5≡ �̄. For a nonhomogeneous Poisson process,
the intensity can be a deterministic function of the time
but still independent of the realization of the stochastic
process.

6 Mathematically, Ht is a version of � -field generated by the random
process up to time t. Summary statistics such as how many points
occurred before t or the passage of time since the most recent point
are all probability events (sets) belonging to the �-field Ht .
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4.2. The Proposed Model
The mutually exciting point process provides a flexible
framework that well suits the nature of the research
question of our interest. It allows us to model not only
the effect of a particular ad click on future purchase,
but also the dynamic interactions among ad clicks
themselves, and all these effects can be neatly cast into
a continuous-time framework to properly account for
the time effect. We therefore construct our model based
on mutually exciting point processes as follows.

For an individual consumer i (i = 11 0 0 0 1 I), we con-
sider her interactions with the firm’s online marketing
communication and her purchase actions as a mul-
tivariate point process, N i4t5, which consists of K
marginal processes, N i4t5= 6N i

14t51 0 0 0 1N
i
K4t57. Each of

her purchases as well as clicks on various online adver-
tisements is viewed as a point occurring in one of the
K marginal processes. The random variable N i

k4t5 is a
nonnegative integer counting the total number of type
k points that occurred within the time interval 601 t7. We
let k =K stand for purchases and k = 11 0 0 0 1K− 1 stand
for various types of ad clicks. For our data, we consider
K = 4 so that N i

44t5 stands for purchases and N i
14t51N

i
24t5,

and N i
34t5 stand for clicks on search, display, and other

advertisements, respectively. When individual i, for
example, clicks on search advertisements for the second
time at time t0, then a type 1 point occurs, and N i

14t5
jumps from 1 to 2 at t = t0.

The conditional intensity function (defined by Equa-
tion (1)) for individual i’s type k process is modeled as

�i
k4t �Hi

t5 = �i
k exp4�kN

i
K4t55

+

K−1
∑

j=1

∫ t

0
�jk exp4−�j4t − s55 dN i

j 4s5 (4)

= �i
k exp4�kN

i
K4t55

+

K−1
∑

j=1

N i
j 4t5
∑

l=1

�jk exp4−�j4t − t
j4i5

l 551 (5)

for k = 11 0 0 0 1K, where �i
k > 0, �jk > 0, �j > 0, and t

j4i5

l

is the time instant when the lth point in individual
i’s type j process occurs. Note that time t here is
continuous and measures the exact time lapse since
the start of observation (using day as unit, e.g., for a
time lapse of 32.5 hours, t = 10354). Capable of dealing
with continuous time directly, our modeling approach
avoids the assumption of arbitrary fixed time intervals
or the visit-by-visit analysis that merely considers visit
counts and ignores the time effect.

The first component of the intensity �i
k specified in

Equation (4) is the baseline intensity, �i
k. It represents

the general risk of the occurrence of a particular type
of event (i.e., an ad click or a purchase) for a particular
individual, which can be a result of the consumer’s

inherent purchase intention, intrinsic tendency to click
on certain types of online advertisements, and degree
of exposure to the firm’s Internet marketing com-
munication. Apparently, the baseline intensity varies
from individual to individual. We hence model such
heterogeneity among consumers by considering that
�i = 6�i

11 0 0 0 1�
i
K7 follows a multivariate log-normal

distribution,

�i
∼ log-MVNK4��1è�50 (6)

The multivariate log-normal distribution facilitates the
likely right-skewed distribution of �i

k (>0). In addition,
the variance–covariance matrix è� allows for correlation
between different types of baseline intensities; that is,
for example, an individual having a higher tendency
to click on display advertisements may also have a
correlated tendency (higher or lower) to click on search
advertisements.

In modeling the effects of ad clicks, we focus on
their exciting effects on future purchases as well as on
subsequent clicks on advertisements. As is discussed
in §2, behavioral studies on consumers’ processing
of advertising show that prior interactions with mar-
keting communications can increase both perceptual
and conceptual fluency, which directly contributes to
the increase of the probability of consumers’ future
responses to various types of advertisements. Further-
more, increased processing fluency leads to positive
affective evaluation and consideration-set membership
of the advertised brand, which not only increases the
purchase probability directly, but also makes consumers
more active to consult the focal firm’s advertisements
for informational purposes. As a result, prior clicks on
online advertisements could increase the probability
of not only purchase conversion, but also later clicks
on online ads in either the same or a different format.
We hence model the effects of ad clicks in a form
similar to Equation (3). We use �jk (j = 11 0 0 0 1K − 1
and k = 11 0 0 0 1K) to measure the magnitude of increase
in the intensity of type k process (i.e., ad clicks or
purchase) when a type j point (i.e., a type j ad click)
occurs. Hence, �jK captures the direct effects of various
types of ad clicks on purchase conversion, and �jk

(k = 11 0 0 0 1K − 1) represents the exciting effects of prior
ad clicks on later ad clicks in various formats. Among
them, �jj indicates the effect between the same type
of points and is therefore called the self-exciting effect;
for j 6= k, �jk is the mutually exciting effects between
different types of points.

As discussed in §2, the effects of prior ad clicks
decay over time, as memory traces fade and retrieval
failures occur with the passage of time. We therefore
use �j to measure how fast such effects decay over
time. To keep our model parsimonious, we let �jk = �j

for all k = 11 0 0 0 1K, which implies that the decay rates
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of the exciting effects of a type j point on various types
of processes would be the same.7 Whereas a larger �jk

indicates a greater exciting effect instantaneously, a
smaller �j means such exciting effect is more lasting.

The effects of purchases are different from the effects
of ad clicks in at least two aspects. First, compared to
a single click on an advertisement, a past purchase
should have much more lasting effects on purchases
and responses to advertising in the near future, espe-
cially given the nature of the products in our data (i.e.,
major personal electronics). With respect to the time
frame of our study (i.e., three months), it is reasonable
to consider such effects constant over time. Second,
past purchases may impact the likelihood of future
purchases and the willingness to respond to advertising
in either a positive or negative way. A recent purchase
may reduce the purchase need in the near future and
thus lower the purchase intention and the interest in
relevant ads; on the other hand, a pleasant purchase
experience could eliminate purchase-related anxiety
and build up brand trust, which would increase the
probability of repurchase or further browsing of adver-
tising information. Therefore, it is appropriate not to
predetermine the sign of the effects of purchases. Based
on these two considerations, we model the effects of
purchases as a multiplicative term shifting the base-
line intensity, exp4�kN

i
K4t55, so that each past purchase

changes the baseline intensity of the type k process (i.e.,
purchase or one type of ad click) by exp4�k5, where
�k can be either positive or negative. A positive �k

means a purchase increases the probability of future
occurrence of type k points, whereas a negative �k

indicates the opposite.
As is discussed earlier, the intensity �i = 6�i

11 0 0 0 1 �
i
K7

defined in Equation (5) is a vector random process and
depends on the realization of the stochastic process
N i4t5 itself. As a result, �i keeps changing over the
entire process. Figure 2 illustrates how the intensity
of different marginal processes changes over time for
a certain realization of the point process. It is also
worth noting that the intensity function specified in
Equation (5) only indicates the probability of event
occurrence, whereas the actual occurrence could also be
affected by many other unobservable factors, for exam-
ple, unexpected incidents or impulse actions. In this
sense, the model implicitly accounts for nonsystematic
unobservables and idiosyncratic shocks.

7 The model can be easily revised into different versions by allowing
�jk to take different values. In fact, we also estimated two alternative
models: one allowing values of �jk’s to be different from each
other, and the other considering that �jk’s take the same value
for k = 11 0 0 0 1K − 1, which is different from �jK . It is shown that
the performance of our proposed model is superior to that of
both alternative models: the Bayes factors of the proposed model
relative to the two alternative models are exp41200245' 107 × 1052

and exp41900185' 309 × 1082, respectively.

Notice that Equation (4) implicitly assumes that
the accumulative effects from the infinite past up to
time t = 0, which is unobserved in the data, equal
zero; that is, �i

k405−�i
k = 0. In fact, the initial effect

should not affect the estimates as long as the response
function diminishes to zero at infinite and the study
period is long enough. Ogata (1978) theoretically shows
that the maximum likelihood estimates when omitting
the history from the infinite past are consistent and
efficient, as long as the data observation period is
sufficiently long. Using simulated data, we can also
show that Bayesian estimation using left-censored data
can still recover true model parameters for the length
of our observed period. The details of the simulation
study are omitted because of page limitation and are
available upon request.

Based on the intensity function specified in Equa-
tion (5), the likelihood function for any realization of
all individuals’ point processes 8N i4t59Ii=1 can be written
as (Daley and Vere-Jones 2003)

L =

I
∏

i=1

K
∏

k=1

{[N i
k4T 5
∏

l=1

�i
k4t

k4i5
l �Hi

t
k4i5
l

5

]

· exp
(

−

∫ T

0
�i
k4t �Hi

t5 dt

)}

0 (7)

The likelihood function involving a stochastic integra-
tion can be derived in a full closed form, which is
presented in detail in §A.1 of the appendix. It is worth
emphasizing that unlike the typical conversion models
in which advertising responses are treated only as
explanatory variables for purchases, our model treats
ad clicks also as random events that are impacted
by the history, and hence their probability densities
directly enter the likelihood function, in the same
way as purchases. This fully multivariate modeling
approach avoids the structure of conditional (partial)
likelihood, which often arbitrarily specifies “dependent”
and “independent” variables, resulting in statistically
inefficient estimates for an observational study.

To summarize, we constructed a mutually exciting
point process model with individual random effects.
Given the hierarchical nature of the model, we cast
it in the Bayesian hierarchical framework. The full
hierarchical model is described as follows:

N i4t5 � �1�1�1�i
∼ �i4t �Hi

t51

�i
� ��1è� ∼ log-MVNK4��1è�51

�jk ∼Gamma4ā�1 b̄�51 �j ∼Gamma4ā�1 b̄�51 � ∼MVNK4�̄�1 è̄�51

�� ∼MVNK4�̄��1 è̄��
51 è� ∼ IW4S̄−11 �̄51 (8)

where � is a 4K − 15×K matrix whose 4j1 k5th element
is �jk, and � = 6�11 0 0 0 1�K−17 and � = 6�11 0 0 0 1�K7
are both vectors. The parameters to be estimated are
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Figure 2 Illustration of the Intensity Functions

8�1�1�1 8�i91 ��1è�9. Notice that �, �, �, and 8�i9 play
distinct roles in the data-generating process, and the
model is therefore identified (Bowsher 2007).

4.3. Alternative and Benchmark Models
Our modeling framework is general enough to incor-
porate a class of nested models. We are particularly
interested in a special case in which �jk = 0 for j 6= k
and j1 k = 11 0 0 0 1K − 1. It essentially ignores the excit-
ing effects among different types of ad clicks. A past
click on advertisement still has impact on the prob-
ability of future occurrence of purchases as well as
ad clicks of the same type, but it will not affect the
future occurrence of ad clicks of different types. There-
fore, in contrast with our proposed mutually exciting
model, we call this special case the self-exciting model,
because it only captures the self-exciting effects among
advertisement clicks.

For model comparison purpose, we are interested in
different benchmark models for purchase conversion.
A nested benchmark model within our point process
modeling framework is letting �jk = �k = 0 for all
j1 k = 11 0 0 0 1K − 1. In other words, this benchmark

model completely ignores the exciting effects among
all advertisement clicks. Ad clicks still have effects on
purchases, but the occurrence of ad clicks themselves
is not impacted by the history of the process (neither
past ad clicks nor past purchases), and hence their
intensities are taken as given and constant over time.
As a result, the processes for all types of advertisement
clicks are homogeneous Poisson processes, and we thus
call this benchmark model the Poisson process model.

A commonly used model for purchase conversion
is the binary response model that models the pur-
chase conversion as a 0-or-1 variable with consumers’
nonpurchase activities as explanatory variables. We
are thus interested in a benchmark model in which
the probability of an individual consumer making
a purchase within a certain time interval (e.g., each
month) is a logistic regression on the counts of her
clicks on different types of online ads within the same
time interval. We will refer to this benchmark model as
the logistic conversion model. Notice that this logistic
conversion model cannot be directly compared with
the point process models using the model comparison
criteria such as the deviance information criterion (DIC)



Xu, Duan, and Whinston: Point Process Model for Advertising and Conversion
1402 Management Science 60(6), pp. 1392–1412, © 2014 INFORMS

or log-marginal likelihood, because what constitute
the random data within the likelihood function are
different. The occurrence of ad clicks and the time
intervals between them all enter the likelihood function
as in Equation (7) in the point process models, whereas
the likelihood function only accounts for the occurrence
of purchase conversions in the logistic conversion
model. Therefore, we compare our mutually exciting
model with this benchmark model using out-of-sample
prediction on purchase conversion in §6.2.

5. Estimation
To estimate the parameters in the model, we use the
MCMC method for Bayesian inference. We apply the
Metropolis–Hastings algorithm to sample the parame-
ters. Section A.2 in the appendix presents the detailed
steps of the MCMC algorithm. For each model, we ran
the sampling chain for 50,000 iterations using the R
programming language on a Windows workstation
computer and discarded the first 20,000 iterations to
ensure convergence.

5.1. Estimation Results
Before estimating the model using the real data, we
first conduct a simulation study by estimating our
model using simulated data. Results show that our
model can correctly recover the true parameter values.
The details of the simulation study are omitted because
of page limitation and are available upon request. We

Table 3 Parameter Estimates for the Mutually Exciting Model

Search Display Other Purchase

(a) Exciting effects
Search �11 �12 �13 �14

208617 (0.1765) 000860 (0.0214) 005381 (0.0562) 006167 (0.0633)
Display �21 �22 �23 �24

001614 (0.0496) 107818 (0.2314) 002055 (0.0572) 000845 (0.0347)
Other �31 �32 �33 �34

004647 (0.0654) 001270 (0.0367) 800526 (0.4117) 008384 (0.0867)
Purchase �1 �2 �3 �4

−005664 (0.1228) −007556 (0.2348) −006235 (0.1229) 002787 (0.2160)
Decay �1 �2 �3

3400188 (1.7426) 4608854 (4.9370) 5105114 (2.3241)

(b) Individual heterogeneity
Mean ��11 ��12 ��13 ��14

−503926 (0.0166) −601027 (0.0212) −508063 (0.0221) −907704 (0.0762)
Covariance

Search è�111

004584 (0.0246)
Display è�121 è�122

−001197 (0.0212) 005934 (0.0335)
Other è�131 è�132 è�133

−004942 (0.0257) −003380 (0.0304) 100014 (0.0365)
Purchase è�141 è�142 è�143 è�144

002256 (0.1228) −004157 (0.1665) 000762 (0.2440) 203914 (0.2575)

Note. Posterior means and posterior standard deviations (in parentheses) are reported.

then apply the real observational data for estimation.
We estimate the mutually exciting model for the data
of the first three months. We report the posterior means
and posterior standard deviations for major parameters
in Table 3. (The estimates for 12,000 different �i’s are
omitted due to the page limit.)

The estimation results in Table 3(a) demonstrate sev-
eral interesting findings regarding the effects of online
advertisement clicks. First of all, it is shown that there
exist significant exciting effects between the same types
of advertisement clicks as well as between different
types of advertisement clicks. Compared to the base-
line intensities for the occurrence of ad clicks (i.e., �i

j ,
j = 11213), whose expected values (exp8��1j9, j = 11213)
range from exp8−60109' 000022 to exp8−50399' 000046,
the values of �jk (j1 k = 11213) are greater by orders of
magnitude. It implies that given the occurrence of a
particular type of ad click, the probability of ad clicks
of the same type or different types occurring in the near
future is significantly increased. Therefore, the results
underscore the necessity and importance of accounting
for the dynamic interactions among advertisement
clicks in studying their conversion effects.

Compared with the mutually exciting effects, self-
exciting effects between the same type of advertisement
clicks are more salient, as �jj (j = 11213) are greater than
�jk (j 6= k and j1 k = 11213). This result is consistent with
the observed data pattern that it is more common for
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consumers to click on the same type of advertisement
multiple times.

When we compare the mutually exciting effects
between different types of advertisement clicks, inter-
estingly, display advertisements tend to have greater
exciting effects on the other two types of advertisement
clicks than the other way round. The posterior prob-
ability of �21 being greater than �12 is 0092, and the
posterior probability of �23 being greater than �32 is
0087. This result implies that when there is a sequence
of clicks on different types of advertisements in a short
time period, display ad clicks are more likely to occur
at the beginning of the sequence than toward the end,
because they are more likely to excite the other two
types of ad clicks than to be excited by them.

Regarding the direct effects on purchase conver-
sion, the values of �j4 (j = 11213) are much greater
compared with the baseline intensity for purchase
occurrence (i.e., �i

4), whose expected value exp8��149 is
about exp8−90779' 0000006. It indicates that clicking
on an advertisement and visiting the firm’s website
increase the probability of purchase directly, which
is consistent with the previous findings in literature.
Although all three types of advertisement clicks have
direct conversion effects, display advertisement’s direct
conversion effect (�24) is much smaller, which partially
explains the low conversion rate of display adver-
tisements and the general understanding of its low
conversion efficacy.

Past purchases are shown to negatively affect the
probability of future clicks on advertisements. The
parameters �j for j = 11213 take significantly negative
values, whereas the effect on repeated purchases (i.e.,
�4) is insignificant. It suggests that past purchases in
general suppress consumers’ purchase need from this
particular firm and thus diminish their interest in the
firm’s online advertisements; although some consumers
might make repeated purchases, as the positive �4
suggests, they tend to make the repeated purchases
directly, rather than through clicking advertising links
again.

There are also interesting results regarding the
variance–covariance matrix for individual baseline
intensities in Table 3(b). First, notice that the covari-
ances between the individual baseline intensities for
any two types of ad clicks (i.e., è�1211è�1311è�132) are
negative. In other words, a consumer having higher
baseline intensity for clicking search advertisements, for
example, is likely to have lower baseline intensity for
clicking display advertisements. Such negative covari-
ances imply that consumers are initially inclined to
respond to one particular type of online advertisement,
whereas clicking this particular type of advertisement
may increase the probability of clicking other types of
advertisements subsequently. In addition, it is interest-
ing to find that the individual baseline intensity for

Table 4 Model Comparison Results

Model DIC Log-marginal likelihood

Mutually exciting 192,002.56 −93,454.69
Self-exciting 193,513.08 −94,219.22
Poisson process 206,146.80 −99,748.95

clicking display advertisements is negatively correlated
with the individual baseline intensity for purchases;
that is, è�142 < 0. In other words, consumers who
are more likely to respond to display ads usually
have lower initial purchase intention, which partially
explains the lower conversion rate of display ads.

5.2. Model Comparison
We next estimate the alternative self-exciting model and
the benchmark Poisson process model and compare
their goodness of fit with the mutually exciting model
by computing the DIC and the log-marginal likelihood
for the Bayes factor. In computing the log-marginal
likelihood, we draw from the posterior distribution
based on the MCMC sampling chain using the method
proposed by Gelfand and Dey (1994). Table 4 shows
the results of the model comparison criteria for the
three models.

According to Table 4, the Bayes factor of the mutually
exciting model relative to the self-exciting model is
exp4−931454069+9412190325' 100×10332, and the Bayes
factor of the mutually exciting model relative to the
Poisson process model is exp4−931454069+9917480955'

307 × 1021733. The mutually exciting model also has the
lowest DIC value. Therefore, both the DIC and Bayes
factor indicate that the proposed mutually exciting
model outperformed the other two models by a great
extent. Recall that the Poisson process model fails to
capture any exciting effect among advertisement clicks
at all. Given the estimation results showing that such
effects do exist, it is not surprising that such a model
performs poorly in terms of model fit. In contrast, the
self-exciting model captures the exciting effects among
the same type of advertisement clicks, which account
for a considerable portion of the dynamic interactions
among all advertisement clicks. Consequently, the self-
exciting model improves noticeably beyond the Poisson
process model. Nevertheless, its performance is still
substantially inferior to that of the mutually exciting
model because of its omission of the exciting effects
between different types of advertisement clicks.

6. Model Applications
The existence of both mutually exciting and self-exciting
effects indicated by the estimation results suggests the
necessity of reassessing the effectiveness of different
online advertising formats in a more proper approach.
In this section, we apply our model and develop a
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measure to evaluate the conversion effects of different
type of online advertisements. To derive the probability
of purchase occurring after clicking on a certain type
of advertisement, we develop a simulation algorithm
to simulate the mutually exciting processes specified in
our model. The simulation approach also allows us to
explore individual’s future behavior, which we utilize
for out-of-sample validation and prediction purposes.
We also demonstrate how to generalize our model to
incorporate additional information such as marketing
mix variables.

6.1. Conversion Effect
By considering the occurrence of advertisement clicks
as stochastic events, our modeling approach enables us
to more precisely measure different advertisements’
conversion effects by capturing the dynamic inter-
actions among advertisement clicks themselves. In
particular, it enables us to explicitly examine the proba-
bility of purchase occurring within a certain period
of time given a click on a particular type of adver-
tisement initially, which subsumes the cases where
various subsequent advertisement clicks are triggered
after the initial click and lead to the eventual purchase
conversion altogether.

Formally, we define the conversion probability (CP) as
follows. Suppose a representative consumer i clicked
on a type k advertisement at time t0, and no click
occurred in the history before t0.8 Then the conversion
probability for type k advertisement in time period t
given the parameters for the processes 8�1�1�1�i9 can
be defined as

CPk4t3�
i1�1�1�5

=Pr4N i
K4t0 +t5−N i

K4t05>0 �N i
k4t05−N i

k4t0−5=151 (9)

where k= 11 0 0 0 1K − 1. Note that N i
k4t0−5 is defined

as the limit of the type k ad click count up to but not
including time instant t0, i.e., N i

k4t0−5= limt↑t0
N i

k4t5. By
Equation (9), the conversion probability CPk4t5 measures
the probability of purchase conversion occurring within
the time period t given a type k ad click occurred
initially at time t0. Note that CPk4t5 captures both the
direct and the indirect effects of a type k advertisement
click on purchase conversion, because the probability
measure includes not only the cases in which a purchase
occurs directly after the initial ad click (without any
other points in between), but also those cases in which
various advertisement clicks occur after the initial click
and before the purchase conversion. Therefore, as a
measure of the conversion effects of different types of
advertisement clicks, the conversion probability defined

8 In reality, an “initial click” can be approximated as long as there
was no click in the recent history before t0.

in Equation (9) manages to account for the exciting
effects among advertisement clicks themselves.

Based on the Bayesian inference of our proposed
model, we can define the average conversion probability
(ACP) by taking the expectation over the posterior
distribution of the model parameters, p4�1�1�1��1
è� �Data5, as follows:

ACPk4t5

=E6CPk4t3�
i1�1�1�5 �Data7

=

∫

CPk4t3�
i1�1�1�5p4�i

���1è�5

·p4�1�1�1��1è� �Data5d�i d�d�d�d�� dè�0 (10)

Note that we are interested in the average conversion
probability of different types of advertisements for a
representative consumer (i.e., a typical consumer) rather
than any specific consumer in the data set. Therefore,
in Equation (10), the conversion probability is averaged
over the distribution of individual baseline intensities,
p4�i � ��1è�5, as is specified in Equation (6), instead
of using the posterior distribution p4�i � Data5 for a
specific consumer i.

Given the complexity of the mutually exciting point
processes, the conversion probability cannot be explic-
itly derived in a closed form. Instead, we use the
Monte Carlo method to calculate such probabilities.
For this purpose, we develop an algorithm to simulate
the mutually exciting point processes in our proposed
model. This simulation algorithm is an extension of
the thinning algorithm for self-exciting point processes
(Ogata 1981) to mutually exciting point processes with
posterior samples of the model parameters. The algo-
rithm details are presented in §A.3 of the appendix.
Here, we provide a brief overview of this simulation
algorithm. The basic idea of this algorithm is simi-
lar to the typical acceptance–rejection Monte Carlo
method: we first simulate a homogeneous Poisson
process with a high intensity and then drop some
of the extra points probabilistically according to the
actual conditional intensity function. More specifically,
we first draw the model parameters from the MCMC
posterior sample and draw the individual baseline
intensity as well. We then find a constant intensity
that dominates the aggregate intensity function of the
mutually exciting point process. We can thus simulate
the next point of the homogeneous Poisson process
with this constant dominating intensity by generating
the time interval from an exponential distribution. Next,
we probabilistically reject this point according to the
ratio of the aggregate intensity of the mutually exciting
point process to the constant intensity of the Poisson
process. Finally, we assign a type to the generated
point using the intensities for different types of points
as probability weights.

Applying the above algorithm to repeatedly sim-
ulate the point processes in our model, we can
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Table 5 Average Conversion Probabilities (%) of Different
Advertisement Formats

Model Search Display Other

Conversion rate 1.990 0.203 1.774
Mutually exciting 2.030 0.246 1.978
Self-exciting 2.005 0.238 1.968
Poisson process 1.818 0.234 1.703

approximate the average conversion probability in
Equation (10) by

ACPk4t5

=

∫

E6I8N i
K4t0 +t5−N i

K4t05>09 �N i
k4t05−N i

k4t0−5=17

·p4�i
���1è�5

·p4�1�1�1��1è� �Data5d�i d�d�d�d�� dè�

'
1
R

R
∑

r=1

I8N
i4r5
K 4t0 +t5−N

i4r5
K 4t05>091 (11)

where R is the total number of simulation rounds, N i4r54t5
is the point process simulated in the rth round, and
I8 · 9 is the indicator function such that I8N i4r5

K 4t0 + t5−
N

i4r5
K 4t05 > 09 equals 1 if there is at least one purchase

point within the time interval 4t01 t0 + t7 in the rth
simulated point process.

We use the approach described above to compute the
average conversion probabilities for search, display, and
other types of advertisements based on the Bayesian
inference outcome of our proposed model. For each
k ∈ 8112139, we run the simulation for 1,000,000 times
to compute ACPk4t5 according to Equation (11).9 We
choose the time interval t equal to one day so that
the average conversion probabilities for each type
of advertisements are directly comparable to their
conversion rates as in §3. Table 5 presents the average
conversion probabilities of different advertisement
formats computed based on our proposed mutually
exciting model (the second row) in contrast to their
conversion rates (the first row).

As a common measure of the effectiveness of vari-
ous online advertisement formats, conversion rates
simply attribute a purchase completely to the last
advertisement click preceding it. As a result, for those
advertisement formats that tend to be used as the
last stop before a purchase action, such as search
advertisements, their conversion effects can easily be
amplified by such a measure. On the contrary, for those
advertisement formats that are more likely to attract
consumers’ initial attention but less likely to directly
lead to immediate purchase decision, such as display

9 We sample 1,000,000 times with replacement from the 30,000
posterior samples to complete this exercise.

advertisements, their contribution are largely ignored.
The results presented in the first two rows of Table 5
confirm such bias against display advertisements by the
measure of conversion rates. If we compare the ratio of
the conversion rates of display advertisements versus
search advertisements (i.e., 00102) with the ratio of their
average conversion probabilities based on our proposed
mutually exciting model (i.e., 00121), we find that the
relative conversion effect of display advertisements is
underestimated by as much as 1507%. Such underesti-
mation originates from the fact that although display
advertisements have little direct effect on purchase
conversion (recall that display advertisements have
the lowest direct conversion effect, i.e., �24 is much
lower than �14 and �34 according to the estimation
results), they may stimulate subsequent clicks on other
types of advertisements, which in turn leads to the
purchase conversion. In contrast, the proposed measure
of average conversion probability properly captures
such contribution from display advertisements. Notice
that the relative conversion rates often serve as an
important guide for marketing managers to determine
their portfolios of online advertising spending and for
advertising providers to price their advertising vehicles.
In this sense, our analysis results suggest that display
advertisements might have long been undervalued in
the online advertising practice.

To further investigate how neglecting different types
of exciting effects among advertisement clicks would
affect the estimation of their conversion effects, we use
the same approach and compute the average conversion
probabilities for the self-exciting and Poisson process
models based on their respective model inference
outcomes. The results are presented in the third and
fourth rows of Table 5.

Comparing the conversion probabilities evaluated
based on the self-exciting model (the third row of
Table 5) with those based on the mutually exciting
model (the second row of Table 5), we can see that the
conversion effect of display advertisements is underes-
timated by 3.3% by the self-exciting model, whereas the
conversion effects of search and other advertisements
are underestimated by 1.2% and 0.5%, respectively.
Notice that in comparison with our proposed mutually
exciting model, the nested self-exciting model cap-
tures the exciting effects only among the same type of
advertisement clicks, but ignores the exciting effects
between different types of advertisement clicks. This
result thus suggests that among all online advertising
formats we studied, display advertisements have the
most salient effects in stimulating subsequent clicks
on advertisements of different types. If we ignore the
mutually exciting effects among different types of
advertisements, display advertisements’ conversion
effects would be underestimated the most severely.
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If we further compare the conversion probabilities
evaluated based on the Poisson process model (the
fourth row of Table 5) with those based on the self-
exciting model (the third row of Table 5), it is clear
that the Poisson process model underestimates the
conversion effect of search advertisements more greatly
than display advertisements. Recall that compared
with the self-exciting model, Poisson process model
further ignores the self-exciting effects among the same
type of advertisement clicks. This result thus indi-
cates that search advertisements have more salient
self-exciting effects; that is, a search advertisement click
is more likely to be succeeded by further clicks on the
same type of advertisements, which altogether lead
to the purchase conversion. Therefore, ignoring such
self-exciting effects would underestimate the conver-
sion effects of search advertisements more severely
than display advertisements. In conclusion, to obtain
an unbiased assessment of different advertisements’
conversion effects, it is important to account for the
mutually exciting effects as well as the self-exciting
effects among advertisement clicks.

6.2. Prediction and Validation
The simulation algorithm developed to evaluate the
conversion probabilities also enables us to predict each
individual’s future behavior based on their historical
data. It allows us to perform out-of-sample validation of
our proposed model and compare model performances
in terms of predicative power.

Recall that in our data set that spans a four-month
period from April through July, 2008, we use the data
of the first three months for model estimation and
leave the fourth month’s data as a holdout sample. To
perform out-of-sample validation, we randomly select
a sample of 1,000 individuals out of all individuals
used for estimation. For each individual, we predict
their advertisement clicking and purchasing behaviors
for the fourth month (31 days) based on their past
behaviors in the previous three months (91 days) and
the Bayesian inference for model parameters obtained
during the estimation step. The algorithm used to
simulate individuals’ future behaviors is similar to
the one developed in §6.1. The primary difference is
twofold: the baseline intensities �i no longer reflect a
representative consumer, but are now individual spe-
cific and are drawn from the posterior distribution for
each specific individual obtained during the estimation
step; the initial effects at the beginning of the simulated
processes are the accumulated effects of the actual past
behavior for each specific individual over the first three
months. (See §A.3 in the appendix for more details.)

For each of the selected 1,000 individuals, we simulate
10,000 point processes according to the proposed model.
We then calculate the predicted average numbers of
purchases and ad clicks in the fourth month over

Table 6 Average Numbers of Ad Clicks and Purchases per Customer in
the Fourth Month

Search Display Other Purchase

Actual data 0.12 0.070 0.14 0.013
Model 0.16 0.074 0.13 0.013

prediction (0.065, 0.60) (0.027, 0.23) (0.045, 0.82) (0.0083, 0.056)

the 1,000 individuals by taking the median values
from the 10,000 sets of simulation outcomes. We also
construct the 95% interval of these numbers based on
the simulation outcomes. We contrast the predicted
numbers and intervals with the actual data from the
holdout sample. Table 6 presents the out-of-sample
validation results, which show that the actual data
all fall into the 95% predicative intervals and are
quite close to the predicted values, indicating that
the proposed model adequately captures the complex
dynamics underlying consumers’ online advertisement
clicking and purchasing processes.

As out-of-sample prediction can provide statisti-
cally corroborating evidence for the model comparison
results in Table 4, we next compare the predicative per-
formance across different models. For the self-exciting
and the Poisson process models, we use the same simu-
lation approach to forecast individual behaviors in the
fourth month for the same predicative sample based on
the Bayesian estimation outcomes from the two models.
For each of the three comparative models, we calculate
the predicted numbers of purchases and advertisement
clicks of different types for each individual by aver-
aging over the 10,000 simulated processes, and then
we compute the sum of squared errors (SSE) between
the predicted numbers and the observed data from
the holdout sample. Table 7 shows the average sum of
squared errors over the 1,000 selected individuals for
the three models.

As we can see from Table 7, the out-of-sample per-
formances confirm the model comparison results based
on the DIC and Bayes factors reported in Table 4.
The proposed mutually exciting model has the lowest
average sum of squared errors and thus performs the
best in terms of both out-of-sample predicative power
and within-sample model fit. In comparison, the nested
self-exciting model underperforms in predicative power
only slightly thanks to the capture of a considerable
portion of the exciting effects among advertisement
clicks. Ignoring all exciting effects among advertise-
ment clicks completely, the Poisson process model

Table 7 Model Comparison for Out-of-Sample Prediction

Model Mutually exciting Self-exciting Poisson process

Average sum of 1.514 1.545 1.705
squared errors
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demonstrates the poorest model performance in all the
three criteria.

As is noted in §4.3, we are also interested in compar-
ing the model performance with the logistic conversion
model, a benchmark representing the commonly used
binary response model for purchase conversion. To
compare the out-of-sample prediction performance of
this model with the mutually exciting model, we use
the logistic conversion model to predict the probability
of purchase occurring in the fourth month for the 1,000
individuals in the predictive sample randomly selected
above. The numbers of each individual’s various types
of ad clicks in the fourth month are simulated using
Poisson distributions, whose parameters are drawn
from the posterior distributions estimated by Bayesian
inference given the previous three months’ data. The
simulated ad click numbers are then plugged into the
logistic regression outcomes to calculate the predicted
purchase probability in the fourth month for each
individual. Out-of-sample prediction performance is
compared using the SSE between the predicted pur-
chase probability and the observed purchase occurrence.
We find that the logistic conversion model has an SSE
equal to 18.838, whereas the mutually exciting model
has an SSE equal to 14.475. The substantial difference
in prediction accuracy (over 30%) thus confirms the
superior performance of our proposed model.

6.3. Incorporating Additional Information
Marketing researchers are often interested in gaining
richer implications by incorporating marketing mix
variables (such as prices and promotions) and consumer
demographic information (such as age, gender, and
income level) into the model when these data are
available. Our modeling framework is general enough
to facilitate such extension, as we demonstrate below.

To incorporate individual-specific and/or time-
varying covariates into the model, we can allow the
individual baseline intensity �i to take a more gen-
eral form, �i4t5, which is dependent on these newly
introduced explanatory variables. Specifically, we can
rewrite the conditional intensity function in Equa-
tion (5) as

�i
k4t �Hi

t5 = �i
k4t5exp4�kN

i
K4t55

+

K−1
∑

j=1

N i
j 4t5
∑

l=1

�jk exp4−�j4t − t
j4i5

l 551 (12)

where
log�i4t5= �i +êXi4t51

�i ∼MVNK4�� +ìZi1è�50
(13)

Here �i4t5= 6�i
14t51 0 0 0 1�

i
K4t57

′ and �i = 6�i
11 0 0 0 1�

i
K7

′

are both vectors; Xi4t5 are M -dimensional time-varying
covariates (e.g., marketing mix variables); Zi are L-
dimensional individual-specific covariates (e.g., con-
sumer demographic information); and ê and ì are

K ×M and K ×L matrices of model parameters, respec-
tively. We can estimate the extended model using
similar Bayesian estimation strategy as the original
model and applying additional Metropolis and Gibbs
sampling steps for ê and ì. The main challenge lies
in the integral over the time-varying covariates in
computing the likelihood function. Complex as it might
become, the likelihood function can be derived in a
closed form in most cases (e.g., when Xi4t5 is a step
function over time, such as prices). In other cases,
numerical integration or Monte Carlo methods should
always apply.

To illustrate how the above model extension can be
implemented in the context of our study, we acquire
additional data from the focal firm on its daily average
markup ratio to account for the firm’s marketing mix
during the study period. The daily average markup
ratio is calculated by averaging the ratio between the
sales price and the cost over all orders placed every day
from April to June, 2008. The data exhibit stable pattern
and indicate no major change in the firm’s sales and
promotion strategy during the study period. We use
these data as the Xi4t5 variables in Equation (13) and
introduce four new parameters, ê = 6�11�21�31�47

′,
into the original mutually exciting model. The likeli-
hood function and the MCMC algorithm for estimation
are detailed in §A.4 of the appendix. The estimation
results show that our original results are robust after
controlling the marketing mix. The estimates of all
major parameters 8�1�1�9 from the extended model
are very close to those from the original model, and the
posterior mean values of ê are unsurprisingly negative.
Because of the page limit, we omit the detailed estima-
tion results in this paper, which are available upon
request. In addition, we also compute the fit statistics
of the extended model: the DIC is 192,050.06, and the
log-marginal likelihood is −94106308, which are both
inferior to those of the original mutually exciting model
as in Table 4. It thus indicates that incorporating this
additional marketing mix component in the context of
our study does not improve the model performance.

7. Discussion and Conclusion
In this paper, we develop a Bayesian hierarchical model
that incorporates the mutually exciting point process
and individual heterogeneity to study the conversion
effects of different online advertising formats. The
mutually exciting point process offers us a flexible
framework to model the dynamic and stochastic interac-
tions among online consumers’ advertisement clicking
and purchasing behaviors. To account for heterogeneity
among consumers, our model allows them to have
different propensities for ad clicking and purchas-
ing using random effects for their baseline intensities.
We successfully apply the MCMC method to obtain
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Bayesian inference for our model. We construct con-
version probability based on our proposed mutually
exciting model to properly evaluate the conversion
effects of various types of online advertisements. To
compute the conversion probability and predict con-
sumers’ future behaviors, we develop a simulation
algorithm by extending the existing algorithm to mutu-
ally exciting point processes with posterior sampling
of parameters. Using proprietary data from a major
vendor of consumer electronics, we demonstrate that
our proposed mutually exciting model has superior
goodness of fit and leads to proper evaluation of con-
version effects by successfully capturing the exciting
effects among advertisement clicks.

7.1. Related Modeling Frameworks
Empirical studies of conversion and attribution through
multiple advertising channels typically require multi-
variate models. As we discuss below, compared with
other existing multivariate modeling frameworks, the
mutually exciting point process provides a flexible
continuous-time model to accommodate multivariate
event data with precise time-stamp records and account
for the complete event history.

When the data are only recorded as counts within
fixed time periods, a Poisson count model with latent
multivariate linear or simultaneous equation models
for the unobserved Poisson parameters has been suc-
cessfully applied in marketing (e.g., Dong et al. 2011).
However, if the original data are disaggregate (e.g.,
generated by a continuous-time process), temporal
aggregation such as converting time-stamped inci-
dences into daily or monthly counts has been known to
cause biased estimation of the magnitude and duration
of advertising effects (Leone 1995, Tellis and Franses
2006). Indeed, when daily aggregation is applied to our
data, it is obvious that the loss of ordering in clumpy
ad-click and purchase events within a day can cause
erroneous estimation of the advertising effects. To test
it, we aggregate our data into daily counts and test a
version of the multivariate Poisson count model, where
(a) the Poisson parameter for number of purchases is a
log-linear model of the ad clicks in the same period
and the lagged purchase counts, and (b) the Poisson
parameters for the numbers of various types of ad
clicks are log-linear models of the lagged ad clicks
and purchases. We compare out-of-sample prediction
with our model and find that its performance is sub-
stantially inferior (the prediction is inferior to that
of the Poisson process model in Table 7). Therefore,
instead of selecting a time interval for aggregation,
the mutually exciting point process is a natural and
needed development in modeling multivariate event
data in continuous time.

Another approach to modeling multivariate event
data is to correlate interincidence durations with

Sarmanov class distributions (e.g., Park and Fader 2004)
or, more generally, copulas (e.g., Danaher and Smith
2011). A Sarmanov class model, which can be shown
as a special case of copulas, does not easily extend
to more than three dimensions (Danaher and Smith
2011). The number of parameters in the Sarmanov
class distribution increases exponentially with the
model dimension, and it often involves considerable
algebraic derivation of the likelihood function. For
our research context, in which past purchases and
clicks on the various types of ads can all influence the
probability of clicking or buying at the current time,
correlating high-dimensional interincidence durations
by the Sarmanov distribution could be computation-
ally impractical. Other copula models can be more
computationally tractable. But these models still have
to assume that the current time hazard is correlated
with a fixed number of concurrent and past durations,
which amounts to the Markov property (Park and
Fader 2004). For our data, in which a random number
of events often occur in a clustered fashion, it is hard
to justify selecting an arbitrary number of correlated
durations and assuming it is a Markov process. In
contrast, the mutually exciting point process does not
assume Markov property by allowing dependence on
all previous events and time intervals and letting their
effects decay over time, which is a more natural choice
in our research context.

7.2. Data Availability and Limitation
In addition to the ad clicking data, other online activity
data may also be relevant in studying the conversion
effects of online advertisements, for example, users’
direct visit data (i.e., directly visiting the firm’s website
without clicking any advertising link) or ad exposure
data (i.e., individual’s level of exposure to various
advertising broadcasting including display ads, tele-
vision ads, etc.). Thanks to the abundance of digital
footprints, these types of data are becoming increas-
ingly available to researchers (e.g., Zantedeschi et al.
2013). Our modeling framework is general enough to
incorporate these data once available. For example, we
can incorporate direct visits into our current model as
an additional marginal process (i.e., the (K + 1)th pro-
cess), which can be influenced by other processes and
contributes to purchase conversions as well. We can
further extend the model specification in §6.3 to allow
Xi4t5 to include each individual’s time-varying ad expo-
sure levels to capture their effects on the occurrence of
ad clicks and purchases.

Neither direct visit data nor ad exposure data are
available in our data set. We would thus like to discuss
to what extent our results are robust given such data
limitation. Consumers might visit the website directly a
number of times after clicking on an ad before making
a purchase, and these direct visits might contribute to
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the conversion as well. Without observing the direct
visits, the expected conversion effects of all these unob-
served events are implicitly incorporated in the model
parameters formulating the conditional intensity for
purchase occurrence as in Equation (4). If direct visits
were observed, their effects would be separated out
from the current model parameters and explicitly rep-
resented by the model parameters for the additional
4K + 15th process. Therefore, in the two cases with and
without direct visit data, the model parameters incor-
porate different effects and hence should be interpreted
differently. Nevertheless, the conversion probability
as we estimate in this paper, which delivers the main
implications on ad effectiveness, would remain robust,
because, by its definition, conversion probability takes
expectation over all possible events (either explicitly
modeled or implicitly incorporated) happening between
an initial ad click and the final purchase conversion.
Likewise, without observing the ad exposure data, we
incorporate the expected ad exposure level for each
individual in the individual-specific baseline intensity.
The actual ad exposure data would generally vary over
time if they were observed. As long as the temporal
variation of the exposure data is stationary without
systematic trends or disproportionately large shocks,
the conversion probability will remain robust after
averaging across all individuals over time. However,
if there were dramatic or systematic variations in ad
exposure levels (e.g., caused by major changes in the
firm’s advertising strategy), then missing advertising
exposure data could bias the estimates. Nonetheless, to
our knowledge, there was not any major change in the
firm’s marketing efforts during the period of our study,
as is verified by the top marketing manager of the firm
furnishing the data. It thus sustains our confidence in
the robustness of our results.

7.3. Conclusion
This study provides valuable managerial implica-
tions for marketing managers seeking optimal online
advertising strategies as well as Internet advertising
providers. We underscore a new perspective in mea-
suring the effects of online advertisement clicks on
purchase conversion. We suggest that to properly assess
the conversion effects of various types of online adver-
tisements, it is inadequate to merely focus on the direct
effects of advertisement clicks on purchase probabilities
per se. Even though an advertisement click does not
lead to immediate purchase, it may increase the prob-
abilities of subsequent clicks through other formats
of advertisements, which in turn contribute to the
final conversion. Such indirect contribution should not
be neglected in evaluating the conversion effects of
advertisements, which calls for novel modeling meth-
ods. Our proposed mutually exciting model and the
associated conversion probability provide marketing

managers and Internet advertising providers with an
innovative method readily applicable to the proper
measurement of the efficacy of online advertisements
actualizing this particular perspective.

The results from our analysis shed new light on
the understanding of the effectiveness of different
types of online advertisements. We show that display
advertisements are likely to stimulate subsequent visits
through other online advertisement formats, such
as search advertisements, though they have a low
direct effect on purchase conversions. Neglecting such
effects and overemphasizing the “last click” effects, the
commonly used measure of conversion rate is biased
toward search advertisements and underestimates the
relative effectiveness of display advertisements the most
severely. For decision makers who are to allocate an
advertising budget among various online advertising
formats, our results suggest display advertisements
have not been given their due share of appreciation,
and a rebalance of the advertising spending portfolio
could optimize the return on investment. On the other
hand, a better understanding of the effectiveness of
different online advertising formats can help online
advertising providers to reassess their pricing strategies
for these online advertising vehicles.

In addition, our method furnishes a useful tool for
Internet marketers to assess the future values of their
potential customers and target their marketing efforts.
We demonstrate the superior predictive power of our
model in forecasting consumers’ future advertisement
clicking and purchasing behaviors. Beyond the typical
predictive models for future purchase activities, our
modeling approach also enables us to predict nonpur-
chase activities at the same time. The ability to predict
future responses to different online advertising formats
is especially important for online marketing managers
to deliver targeted advertisements to potential cus-
tomers in an effective manner.

This study also leads to interesting directions for
future research. For instance, because we provide an
approach to more properly estimate the conversion
probabilities for various types of online ads, future
studies that combine the cost information for different
types of online advertisements with our findings can
help marketers design a more efficient budget alloca-
tion scheme for online advertising. In addition, given
that our data structure only involves user clicks on
advertisements, the exciting effects we study focus
on the effects of prior ad clicks on the probability
of later ad clicks occurring. As discussed previously,
when additional user online behavior data become
available (e.g., advertising exposures, direct website
visits), our model can be easily adapted to incorporate
such data to deliver richer and deeper implications
about more detailed processes of consumer respond-
ing to online advertisements. Moreover, our general
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modeling framework can be applied to many other
contexts involving multiple interdependent activities
with individual heterogeneity in continuous time.
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Appendix

A.1. Likelihood Function
The likelihood function for individual i can be written as
follows:
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The likelihood function for all individuals is thus
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I
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where �= 8�i9Ii=1.

A.2. MCMC Algorithm
Below are the details of the MCMC algorithm used in this
study.

Step 12 Sample �. We consider the prior distribution of �jk

following Gamma4ā�1 b̄�5, where ā� = b̄� = 1/2. We use the
Metropolis–Hastings algorithm to sample �. The proposal
function is a random-walk generation such that the next
draw �∗ is drawn from a log-normal distribution, i.e., �∗

jk ∼

log-N4log4�jk51 �̄
2
jk5. We adjust the variance �̄2

jk adaptively
such that the acceptance rate of proposed �∗ is between 0.1
and 0.4. The accepting probability for �∗ is given as
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where the last terms in the numerator and denominator cor-
respond to the Jacobian in the log-normal proposal function.

Step 22 Sample �. We consider the prior distribution of �j

following Gamma4ā�1 b̄�5, where ā� = b̄� = 1/2. We use the
Metropolis–Hastings algorithm to sample �. The proposal
function is a random-walk generation such that the next
draw �∗ is drawn from a log-normal distribution, i.e., �∗

j ∼

log-N4log4�j 51 �̄
2
j 5. We adjust the variance �̄2

j adaptively such
that the acceptance rate of proposed �∗ is between 0.1 and
0.4. The accepting probability for �∗ is given as
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Step 32 Sample �. We consider the prior distribution of
� following MVNK4�̄�1 è̄�5, where �̄� = 0, and è̄� = 104IK
(IK is the K ×K identity matrix). We use the Metropolis–
Hastings algorithm to sample �. The proposal function is
a random-walk generation such that the next draw �∗ is
drawn from a normal distribution, i.e., �∗

k ∼N4�k1 �̄
2
k 5. We

adjust the variance �̄2
k adaptively such that the acceptance

rate of proposed �∗ is between 0.1 and 0.4. The accepting
probability for �∗ is given as

min
{

L4�1�1�∗1� �Data5MVNK4�
∗ � �̄�1 è̄�5

L4�1�1�1� �Data5MVNK4� � �̄�1 è̄�5
11
}

0

Step 42 Sample �i. We consider the prior distribution of each
�i following a K-dimensional multivariate log-normal distri-
bution log-MVNK4��1è�5. We use the Metropolis–Hastings
algorithm to sample �i. The proposal function is a random-
walk generation such that the next draw �i∗ is drawn from
a log-normal distribution, i.e., �i∗

k ∼ log-N4log4�i
k51 �̄

2
k 5. We

adjust the variance �̄2
k adaptively such that the average

acceptance rate of all proposed �i∗’s is between 0.1 and 0.4.
The accepting probability for �i∗ is given as

min
{

Li4�1�1�1�
i∗ �Datai5·log-MVNK4�

i∗ ���1è�5·
∏

k�
i∗
k

Li4�1�1�1�
i �Datai5·log-MVNK4�

i ���1è�5·
∏

k�
i
k

11
}

0

Step 52 Sample ��. We consider the conjugate prior distri-
bution for ��, which follows a K-dimensional multivariate
normal distribution MVNK4�̄��1 è̄��

5, where �̄�� = 0 and
è̄��

= 106IK . The next draw �∗
� is drawn from a multivariate

normal distribution

�∗

� ∼MVNK4A1B51

where A = B′44
∑I

i=1 log�i5′è−1
� + �̄′

��
è̄−1

��
5′ and B = 4Iè−1

� +

è̄−1
��
5−1.

Step 62 Sample è�. We consider the conjugate prior distribu-
tion for è�, which follows a K-dimensional inverse Wishart
distribution IW4S̄−11 �̄5, where S̄ = IK and �̄ = 1. The next
draw è∗

� is drawn from an inverse Wishart distribution,

è∗

� ∼ IW

(( I
∑

i=1

4log�i
− ��54log�i

− ��5
′
+ S̄

)−1

1 I + �̄

)

0

A.3. Simulation Algorithms
To simulate the point processes according to our proposed
model, we extend the thinning algorithm in Ogata (1981) to
mutually exciting point processes with the parameter values
drawn from the posterior distribution obtained during the
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estimation process. The following is the detailed algorithm
used in §6.1 to simulate the behavior of a representative
consumer after clicking on a particular type of advertisement
at time t0 = 0.

1. Draw �, �, �, ��, è� with replacement from the pos-
terior samples obtained during estimation. Generate �i ∼

MVNK4��1è�5.
2. Simulate a point process in 601 T 7 given �, �, �, �i, and

a realized type j0 point at t0 = 0 (j0 = 11 0 0 0 1K − 1).
(a) Let t = 0, n= 0, nK = 0, m=

∑K
k=14�

i
k +�j0k

)
(b) Repeat until t > T

(i) Simulate s ∼ Exp4m5
(ii) Set t = t + s
(iii) If t < T , calculate

�k = �i
k exp4�knK5+�j0k

exp4−�j0
t5

+

n
∑

l=11 jl 6=K

�jlk
exp4−�jl

4t − tl55

and let �=
∑K

k=1 �k. Generate U ∼ Unif40115.
(A) If U ≤ �/m, n = n + 1, tn = t. Simulate jn ∼

multinomial411�1/�1 0 0 0 1�K/�5.
—If jn =K, nK = nK + 1,

m= �−�i
k exp4�k4nK − 155+�i

k exp4�knK50

—If jn 6=K,

m= �+�jnk
0

(B) If U >�/m, m= �.
(c) The simulation output is 8t11 0 0 0 1 tn9 and 8j11 0 0 0 1 jn9.
3. Repeat R times of Steps 1 and 2.

The simulation algorithm used in §6.2 to predict an indi-
vidual consumer’s behavior in the fourth month is similar
to the above algorithm, with two differences: (1) Because
the prediction is based on the activity history of a specific
individual consumer i, �i is now supposed to be sampled
from the posterior �4�i � data5. Therefore, in Step 1, we draw
�i with replacement from the posterior samples obtained
in the estimation step. (2) In Step 2, instead of assuming
a certain type of point realized at time t0, now the initial
effect at t0 is the accumulative effect of the observed behavior
of individual i in the data of the first three months. Conse-
quently, the intensity we use to simulate Poisson process
before thinning is specific to individual i’s history, and the
calculation of m in Step 2(a) becomes

m=

K
∑

k=1

{

�i
k exp4�kN

i
K4t055+

K−1
∑

j=1

N i
j 4t05
∑

l=1

�jk exp4−�j4t0 − t
j4i5
l 55

}

0

Accordingly, �k in Step 2(b)(iii) also needs to be modified as

�k = �i
k exp4�k4nK +N i

K4t0555+
K−1
∑

j=1

N i
j 4t05
∑

l=1

�jk exp4−�j4t − t
j4i5
l 55

+

n
∑

l=11 jl 6=K

�jlk
exp4−�jl

4t − tl550

A.4. Model Extension
For the extended model incorporating the additional market-
ing mix data described in §6.3, the likelihood function for
individual i can be derived as

L̃i4�1�1�1�1�
i
�Datai5

=

K
∏

k=1

{N i
k4T 5
∏

l=1

[

�i
k exp8�kp̄tk4i5l

9exp4�kN
i
K4t

k4i5
l 55

+

K−1
∑

j=1

N i
j 4t

k4i5
l 5
∑

m=1

�jk exp4−�j4t
k4i5
l − t

j4i5
m 55

]

· exp
[

−�i
k

N i
K 4T 5
∑

m=0

exp4�km5
∫ t

K4i5
m+1

t
K4i5
m

exp8�kp̄t9 dt

−

K−1
∑

j=1

N i
j 4T 5
∑

m=1

�jk

�j

41 − exp4−�j4T − t
j4i5
m 555

]}

1

where 8p̄t9 is the daily average markup ratio. The likelihood
function for all individuals is thus

L̃4�1�1�1�1� �Data5=

I
∏

i=1

L̃i4�1�1�1�1�
i
�Datai50

The MCMC algorithm for estimating the extended model
is similar to the one described in §A.2, where the likelihood
functions are replaced with L̃i and L̃. To sample �, we need
to add an additional step between Steps 3 and 4 in §A.2, as
is described below.

Step for sampling �. We consider the prior distribution of �
following MVNK4�̄�1 è̄�5, where �̄� = 0 and è̄� = 104IK (IK
is the K ×K identity matrix). We use Metropolis–Hastings
algorithm to sample �. The proposal function is a random-
walk generation such that the next draw �∗ is drawn from
a normal distribution, i.e., �∗

k ∼ N4�k1 �̄
2
k 5. We adjust the

variance �̄2
k adaptively such that the acceptance rate of

proposed �∗ is between 0.1 and 0.4. The accepting probability
for �∗ is given as

min
{

L̃4�1�1�1�∗1� �Data5MVNK4�
∗ � �̄�1 è̄�5

L̃4�1�1�1�1� �Data5MVNK4� � �̄�1 è̄�5
11
}

0
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