Online Appendix

Forward-Looking Behavior in Mobile Data Consumption and Targeted Promotion Design: A Dynamic Structural Model

Lizhen Xu, Jason A. Duan, Yu (Jeffrey) Hu Yuan Cheng, Yan Zhu

A Proofs of Propositions in Section 5.1

To simplify notations, without causing confusion, below we suppress subscripts i and t. Also notice that throughout all the proofs below, wherever *strict* monotonicity or concavity applies, we explicitly stress it; without explicit stress of strictness, we mean weak monotonicity/concavity.

Proof of Proposition 1. Myopic users determine their daily usage by maximizing the perperiod utility only, which is defined in (1). The optimal daily usage a^* can thus be derived as

$$a^{*} = \begin{cases} \mu + \xi - \eta p \, (>q) & \text{if } 0 \le q < \mu + \xi - \eta p \\ q & \text{if } \mu + \xi - \eta p \le q \le \mu + \xi \\ \max \left\{ \mu + \xi, 0 \right\} \, (\mu + \xi \end{cases}$$
(A.1)

In any day before the day when the data plan quota is fully expended, $a^* = \max \{\mu + \xi, 0\} (< q)$, which is obviously independent of q. Q.E.D.

In order to prove Proposition 2, we first prove two key lemmas with regard to the properties of the expected value function $\bar{V}(q, d)$ as defined in (5).

Lemma A.1. For the last period, the expected value function $\overline{V}(q, d = 1)$ is continuous, increasing, differentiable, and strictly concave in the remaining data plan quota q.

Proof. Recall that in the last period,

$$V(q, d = 1, \xi) = \max_{a \ge 0} \left[(\mu + \xi) a - \frac{1}{2}a^2 - \eta p \max\{a - q, 0\} \right]$$
(A.2)

We can thus explicitly solve the value function as

$$V(q, d = 1, \xi) = \begin{cases} \frac{1}{2} (\mu + \xi - \eta p)^2 + \eta p q & \text{if } 0 \le q < \mu + \xi - \eta p \\ (\mu + \xi) q - \frac{1}{2} q^2 & \text{if } \mu + \xi - \eta p \le q \le \mu + \xi \\ \frac{1}{2} (\max \{\mu + \xi, 0\})^2 & \text{if } q > \mu + \xi, \end{cases}$$
(A.3)

where $q \ge 0$. It is easy to show that $V(q, d = 1, \xi)$ is continuous, increasing, differentiable, and concave in q given any ξ . The continuity can be easily verified by checking the function value at each endpoint. (Notice that because $q \ge 0$, if $\mu + \xi - \eta p < \mu + \xi < 0$, only the third segment applies and (A.3) reduces to a constant so that $V(q, d = 1, \xi) \equiv 0$ for $\forall q \ge 0$; if $\mu + \xi - \eta p < 0 < \mu + \xi$, (A.3) reduces to two segments.) The monotonicity is immediate because the piecewise function is continuous and piecewise increasing in q. $V(q, d = 1, \xi)$ is differentiable because the left and right derivatives are equal at each endpoint: $\frac{\partial}{\partial q}V_{q \to (\mu + \xi - \eta p)^+}(q, d = 1, \xi) = \frac{\partial}{\partial q}V_{q \to (\mu + \xi - \eta p)^-}(q, d = 1, \xi) = \eta p$, and $\frac{\partial}{\partial q}V_{q \to (\mu + \xi)^+}(q, d = 1, \xi) = \frac{\partial}{\partial q}V_{q \to (\mu + \xi)^-}(q, d = 1, \xi) = 0$. $V(q, d = 1, \xi)$ is concave in q because it is differentiable and piecewise concave in q.

Given that $V(q, d = 1, \xi)$ is continuous, increasing, and differentiable in q for any ξ , it is immediate that the expected value function $\overline{V}(q, d) = E_{\xi}V(q, d, \xi)$, as an integral over all ξ , is also continuous, increasing, and differentiable in q.

To show that $\overline{V}(q,d)$ is strictly concave in q, note that because $V(q,d=1,\xi)$ is concave in q, by the definition of concavity, for any $q_1, q_2 > 0$ and $\lambda \in (0,1)$, we have

$$V((1-\lambda)q_1 + \lambda q_2, d = 1, \xi) \ge (1-\lambda)V(q_1, d = 1, \xi) + \lambda V(q_2, d = 1, \xi)$$
(A.4)

for any ξ . Because $V(q, d = 1, \xi)$ is *strictly* concave in the second segment in (A.3), *strict* inequality holds in (A.4) when $\xi \in (-\mu + q_1, -\mu + q_1 + \eta p) \cup (-\mu + q_2, -\mu + q_2 + \eta p)$. Recall that ξ is a random variable with a continuous support over the entire real field. Therefore, when taking expectation over ξ on both sides of (A.4), we have

$$E_{\xi}V((1-\lambda)q_1 + \lambda q_2, d = 1, \xi) > (1-\lambda)E_{\xi}V(q_1, d = 1, \xi) + \lambda E_{\xi}V(q_2, d = 1, \xi), \quad (A.5)$$

which shows $\overline{V}(q, d = 1)$ is *strictly* concave in q. Q.E.D.

Lemma A.2. If the expected value function for the next period, $\bar{V}(q', d-1)$, is continuous, increasing, differentiable, and strictly concave in q', then the expected value function for the current period, $\bar{V}(q, d)$, is also continuous, increasing, differentiable, and strictly concave in q.

Proof. We first show that given any ξ , the value function $V(q, d, \xi)$ is continuous, increasing, differentiable, and concave in q if $\overline{V}(q', d-1)$ is continuous, increasing, differentiable, and strictly concave in q'. Substituting (1) and (3) into (4), we can rewrite the current-period value function as

$$V(q,d,\xi) = \max_{a\geq 0} \left[(\mu+\xi) a - \frac{1}{2}a^2 - \eta p \left[a-q\right]^+ + \beta \bar{V} \left(\left[q-a\right]^+, d-1 \right) \right],$$
(A.6)

where $[\cdot]^+$ stands for max $\{\cdot, 0\}$. To simplify notation, we use $\bar{V}_q(q, d)$ to represent $\frac{\partial}{\partial q}\bar{V}(q, d)$ for the rest of this proof.

Let \tilde{a} be the solution to the first order condition (with respect to a) when a < q, that is,

$$\mu + \xi - \tilde{a} - \beta \bar{V}_q \left(q - \tilde{a}, d - 1 \right) = 0 \tag{A.7}$$

Therefore, $\tilde{a} < q$ if and only if $\mu + \xi - q - \beta \bar{V}_q (0, d-1) < 0$. When a > q, the first order condition yields

$$\mu + \xi - a^* - \eta p = 0. \tag{A.8}$$

 $a^* > q$ if and only if $\mu + \xi - q - \eta p > 0$. Notice that $\beta \overline{V}_q(0, d-1) < \eta p$ given $\beta < 1$. Therefore, we can summarize the optimal usage in the current period as

$$a^{*}(q,d,\xi) = \begin{cases} \mu + \xi - \eta p \ (>q) & \text{if } 0 \le q < \mu + \xi - \eta p \\ q & \text{if } \mu + \xi - \eta p \le q \le \mu + \xi - \beta \bar{V}_{q} \ (0,d-1) \\ \max\left\{\tilde{a},0\right\}(\mu + \xi - \beta \bar{V}_{q} \ (0,d-1) \end{cases}$$
(A.9)

Again, because $q \ge 0$, if $\mu + \xi - \beta \bar{V}_q(0, d-1) < 0$ or $\mu + \xi - \eta p < 0$, (A.9) reduces to one or two

segments only. Accordingly, the current-period value function can be written as

$$V(q,d,\xi) = \begin{cases} \frac{1}{2} (\mu + \xi - \eta p)^2 + \eta p q + \beta \bar{V}(0,d-1) & \text{if } 0 \le q < \mu + \xi - \eta p \\ (\mu + \xi) q - \frac{1}{2} q^2 + \beta \bar{V}(0,d-1) & \text{if } \mu + \xi - \eta p \le q \le \mu + \xi - \beta \bar{V}_q(0,d-1) \\ F(q;\xi) & \text{if } q > \mu + \xi - \beta \bar{V}_q(0,d-1) , \end{cases}$$
(A.10)

where $F(q;\xi)$ is defined by substituting the optimal usage $a^* = \max{\{\tilde{a}, 0\}} (< q)$ into (A.6), that is,

$$F(q;\xi) = (\mu + \xi) a^* - \frac{1}{2} a^{*2} + \beta \bar{V} (q - a^*, d - 1).$$
(A.11)

It is easy to show that $V(q, d, \xi)$ is continuous in q by verifying the continuity of function value at the endpoints: for example, when $q = \mu + \xi - \beta \bar{V}_q (0, d-1)$, $a^* = q$ so $F(q;\xi) = (\mu + \xi) q - \frac{1}{2}q^2 + \beta \bar{V}(0, d-1)$. To show that $V(q, d, \xi)$ is increasing in q, we just need to show $F(q;\xi)$ is increasing in q, because it is obviously true for the first two segments of (A.10). Taking derivative with respect to q on both sides of (A.11), by Envelope Theorem, we have

$$F_q(q;\xi) = \beta \bar{V}_q(q-a^*, d-1) \ge 0,$$
(A.12)

because $\bar{V}(q', d-1)$ is increasing in q'. Therefore, $F(q;\xi)$ is increasing in q; so is $V(q, d, \xi)$.

It is easy to show that $V(q, d, \xi)$ is differentiable in q, noticing that

$$\frac{\partial}{\partial q} V_{q \to \left(\mu + \xi - \beta \bar{V}_q(0, d-1)\right)^-} \left(q, d, \xi\right) = \beta \bar{V}_q\left(0, d-1\right) \tag{A.13}$$

$$\frac{\partial}{\partial q} V_{q \to \left(\mu + \xi - \beta \bar{V}_q(0, d-1)\right)^+} \left(q, d, \xi\right) = F_q\left(q; \xi\right) = \beta \bar{V}_q\left(0, d-1\right), \tag{A.14}$$

where (A.14) holds by (A.12) and the fact that $a^* = q$ when $q = \mu + \xi - \beta \bar{V}_q (0, d-1)$.

We next show that $V(q, d, \xi)$ is concave in q. It is obvious that $V(q, d, \xi)$ is concave when $0 \le q < \mu + \xi - \eta p$ and strictly concave when $\mu + \xi - \eta p \le q \le \mu + \xi - \beta \overline{V}_q(0, d-1)$. Given that $V(q, d, \xi)$ is differentiable in q, therefore, we only need to show that $F(q; \xi)$ is (strictly) concave in q for $q > \mu + \xi - \beta \overline{V}_q(0, d-1)$.

We prove by the definition of concavity. Consider any $q_1, q_2 \ge \max \{\mu + \xi - \beta \overline{V}_q(0, d-1), 0\},\$

let $\hat{q}_1 = q_1 - a^*(q_1)$ and $\hat{q}_2 = q_2 - a^*(q_2)$. In other words, we use to represent the remaining quota at the beginning of the next period as a result of the optimal amount of usage in the current period. Note that $0 \leq \hat{q}_1 \leq q_1$ and $0 \leq \hat{q}_2 \leq q_2$. Denote $\bar{q} = \lambda q_1 + (1 - \lambda) q_2$ and $\bar{\hat{q}} = \lambda \hat{q}_1 + (1 - \lambda) \hat{q}_2$ for $\forall \lambda \in (0, 1)$. Clearly, $0 \leq \bar{\hat{q}} \leq \bar{q}$. In addition, define $U\left(q, q'\right) = (\mu + \xi) \left(q - q'\right) - \frac{1}{2} \left(q - q'\right)^2$. It is easy to show that $U\left(q, q'\right)$ is concave in $\left(q, q'\right)$ because it is a quadratic function with a negative semidefinite Hessian matrix. Hence, $F(\bar{q}; \xi)$ from (A.11) can be rewritten as

$$F(\bar{q};\xi) = U(\bar{q},\hat{q}) + \beta \bar{V}(\hat{q},d-1)$$

$$\geq U(\bar{q},\bar{q}) + \beta \bar{V}(\bar{q},d-1)$$

$$\geq \lambda U(q_1,\hat{q}_1) + (1-\lambda)U(q_2,\hat{q}_2) + \beta \bar{V}(\bar{q},d-1)$$
(A.15)
$$> \lambda U(q_1,\hat{q}_1) + (1-\lambda)U(q_2,\hat{q}_2) + \beta \lambda \bar{V}(\hat{q}_1,d-1) + \beta (1-\lambda)\bar{V}(\hat{q}_2,d-1)$$

$$= \lambda F(q_1;\xi) + (1-\lambda)F(q_2;\xi)$$

The first inequality in (A.15) holds because of the optimality of \hat{q} ; the second inequality holds because of the concavity of U(q,q') in (q,q'); the third (strict) inequality holds because of the strict concavity of $\bar{V}(q',d-1)$ in q'. As a result, $F(q;\xi)$ is strictly concave in q for any $q \ge$ $\max \{\mu + \xi - \beta \bar{V}_q (0,d-1), 0\}$. Therefore, $V(q,d,\xi)$ is concave in q for any $q \ge 0$ and strictly concave if $q \ge \mu + \xi - \eta p$.

Given we have shown that $V(q, d, \xi)$ is continuous, increasing, differentiable, and concave in qfor any ξ , and it is strictly concave in q when $\xi < -\mu + q + \eta p$, following the same logic as the last part of the proof of Lemma A.1, we conclude that $\bar{V}(q, d) = E_{\xi}V(q, d, \xi)$ is continuous, increasing, differentiable, and strictly concave in q. Q.E.D.

Proof of Proposition 2. Recall the optimal usage $a^*(q, d, \xi)$ derived in (A.9) for any $d \ge 2$. In any day before the day when the data plan quota is fully expended, $a^*(q, d, \xi) = \max{\{\tilde{a}, 0\}} (< q)$. We want to show that \tilde{a} , the solution to (A.7), is *strictly* increasing in q.

Recall that $\tilde{a}(q)$ solves the first order condition

$$\mu + \xi - \tilde{a}(q) - \beta \bar{V}_q(q - \tilde{a}(q), d - 1) = 0$$
(A.16)

By Lemma A.1 and Lemma A.2, the expected value function $\bar{V}(\cdot, \cdot)$ is increasing and strictly concave in the remaining quota for any period. Therefore, for any q' > q,

$$\mu + \xi - \tilde{a}(q) - \beta \bar{V}_q(q' - \tilde{a}(q), d - 1) > 0$$
(A.17)

because $\bar{V}_q(q' - \tilde{a}(q), d - 1) < \bar{V}_q(q - \tilde{a}(q), d - 1)$ given the strict concavity of $\bar{V}(\cdot, d - 1)$. As a result, $\tilde{a}(q') > \tilde{a}(q)$. Therefore, \tilde{a} is strictly increasing in q, which implies $a^*(q, d, \xi) = \max{\{\tilde{a}, 0\}}$ is strictly increasing in q if $0 < a^* < q$. Q.E.D.