Online Appendix

Forward-Looking Behavior in Mobile Data Consumption and Targeted Promotion Design: A Dynamic Structural Model

Lizhen Xu, Jason A. Duan, Yu (Jeffrey) Hu
Yuan Cheng, Yan Zhu

A Proofs of Propositions in Section 5.1

To simplify notations, without causing confusion, below we suppress subscripts i and t. Also notice that throughout all the proofs below, wherever strict monotonicity or concavity applies, we explicitly stress it; without explicit stress of strictness, we mean weak monotonicity/concavity.

Proof of Proposition 1. Myopic users determine their daily usage by maximizing the perperiod utility only, which is defined in (1). The optimal daily usage a^{*} can thus be derived as

$$
a^{*}= \begin{cases}\mu+\xi-\eta p(>q) & \text { if } 0 \leq q<\mu+\xi-\eta p \tag{A.1}\\ q & \text { if } \mu+\xi-\eta p \leq q \leq \mu+\xi \\ \max \{\mu+\xi, 0\}(<q) & \text { if } q>\mu+\xi\end{cases}
$$

In any day before the day when the data plan quota is fully expended, $a^{*}=\max \{\mu+\xi, 0\}(<q)$, which is obviously independent of q. Q.E.D.

In order to prove Proposition 2, we first prove two key lemmas with regard to the properties of the expected value function $\bar{V}(q, d)$ as defined in (5).

Lemma A.1. For the last period, the expected value function $\bar{V}(q, d=1)$ is continuous, increasing, differentiable, and strictly concave in the remaining data plan quota q.

Proof. Recall that in the last period,

$$
\begin{equation*}
V(q, d=1, \xi)=\max _{a \geq 0}\left[(\mu+\xi) a-\frac{1}{2} a^{2}-\eta p \max \{a-q, 0\}\right] \tag{A.2}
\end{equation*}
$$

We can thus explicitly solve the value function as

$$
V(q, d=1, \xi)= \begin{cases}\frac{1}{2}(\mu+\xi-\eta p)^{2}+\eta p q & \text { if } 0 \leq q<\mu+\xi-\eta p \tag{A.3}\\ (\mu+\xi) q-\frac{1}{2} q^{2} & \text { if } \mu+\xi-\eta p \leq q \leq \mu+\xi \\ \frac{1}{2}(\max \{\mu+\xi, 0\})^{2} & \text { if } q>\mu+\xi\end{cases}
$$

where $q \geq 0$. It is easy to show that $V(q, d=1, \xi)$ is continuous, increasing, differentiable, and concave in q given any ξ. The continuity can be easily verified by checking the function value at each endpoint. (Notice that because $q \geq 0$, if $\mu+\xi-\eta p<\mu+\xi<0$, only the third segment applies and (A.3) reduces to a constant so that $V(q, d=1, \xi) \equiv 0$ for $\forall q \geq 0$; if $\mu+\xi-\eta p<0<\mu+\xi$, (A.3) reduces to two segments.) The monotonicity is immediate because the piecewise function is continuous and piecewise increasing in $q . V(q, d=1, \xi)$ is differentiable because the left and right derivatives are equal at each endpoint: $\frac{\partial}{\partial q} V_{q \rightarrow(\mu+\xi-\eta p)^{+}}(q, d=1, \xi)=\frac{\partial}{\partial q} V_{q \rightarrow(\mu+\xi-\eta p)^{-}}(q, d=1, \xi)=\eta p$, and $\frac{\partial}{\partial q} V_{q \rightarrow(\mu+\xi)^{+}}(q, d=1, \xi)=\frac{\partial}{\partial q} V_{q \rightarrow(\mu+\xi)^{-}}(q, d=1, \xi)=0 . V(q, d=1, \xi)$ is concave in q because it is differentiable and piecewise concave in q.

Given that $V(q, d=1, \xi)$ is continuous, increasing, and differentiable in q for any ξ, it is immediate that the expected value function $\bar{V}(q, d)=E_{\xi} V(q, d, \xi)$, as an integral over all ξ, is also continuous, increasing, and differentiable in q.

To show that $\bar{V}(q, d)$ is strictly concave in q, note that because $V(q, d=1, \xi)$ is concave in q, by the definition of concavity, for any $q_{1}, q_{2}>0$ and $\lambda \in(0,1)$, we have

$$
\begin{equation*}
V\left((1-\lambda) q_{1}+\lambda q_{2}, d=1, \xi\right) \geq(1-\lambda) V\left(q_{1}, d=1, \xi\right)+\lambda V\left(q_{2}, d=1, \xi\right) \tag{A.4}
\end{equation*}
$$

for any ξ. Because $V(q, d=1, \xi)$ is strictly concave in the second segment in (A.3), strict inequality holds in (A.4) when $\xi \in\left(-\mu+q_{1},-\mu+q_{1}+\eta p\right) \cup\left(-\mu+q_{2},-\mu+q_{2}+\eta p\right)$. Recall that ξ is a random variable with a continuous support over the entire real field. Therefore, when taking expectation over ξ on both sides of (A.4), we have

$$
\begin{equation*}
E_{\xi} V\left((1-\lambda) q_{1}+\lambda q_{2}, d=1, \xi\right)>(1-\lambda) E_{\xi} V\left(q_{1}, d=1, \xi\right)+\lambda E_{\xi} V\left(q_{2}, d=1, \xi\right), \tag{A.5}
\end{equation*}
$$

which shows $\bar{V}(q, d=1)$ is strictly concave in q. Q.E.D.

Lemma A.2. If the expected value function for the next period, $\bar{V}\left(q^{\prime}, d-1\right)$, is continuous, increasing, differentiable, and strictly concave in q^{\prime}, then the expected value function for the current period, $\bar{V}(q, d)$, is also continuous, increasing, differentiable, and strictly concave in q.

Proof. We first show that given any ξ, the value function $V(q, d, \xi)$ is continuous, increasing, differentiable, and concave in q if $\bar{V}\left(q^{\prime}, d-1\right)$ is continuous, increasing, differentiable, and strictly concave in q^{\prime}. Substituting (1) and (3) into (4), we can rewrite the current-period value function as

$$
\begin{equation*}
V(q, d, \xi)=\max _{a \geq 0}\left[(\mu+\xi) a-\frac{1}{2} a^{2}-\eta p[a-q]^{+}+\beta \bar{V}\left([q-a]^{+}, d-1\right)\right] \tag{A.6}
\end{equation*}
$$

where $[\cdot]^{+}$stands for $\max \{\cdot, 0\}$. To simplify notation, we use $\bar{V}_{q}(q, d)$ to represent $\frac{\partial}{\partial q} \bar{V}(q, d)$ for the rest of this proof.

Let \tilde{a} be the solution to the first order condition (with respect to a) when $a<q$, that is,

$$
\begin{equation*}
\mu+\xi-\tilde{a}-\beta \bar{V}_{q}(q-\tilde{a}, d-1)=0 \tag{A.7}
\end{equation*}
$$

Therefore, $\tilde{a}<q$ if and only if $\mu+\xi-q-\beta \bar{V}_{q}(0, d-1)<0$. When $a>q$, the first order condition yields

$$
\begin{equation*}
\mu+\xi-a^{*}-\eta p=0 . \tag{A.8}
\end{equation*}
$$

$a^{*}>q$ if and only if $\mu+\xi-q-\eta p>0$. Notice that $\beta \bar{V}_{q}(0, d-1)<\eta p$ given $\beta<1$. Therefore, we can summarize the optimal usage in the current period as

$$
a^{*}(q, d, \xi)= \begin{cases}\mu+\xi-\eta p(>q) & \text { if } 0 \leq q<\mu+\xi-\eta p \tag{A.9}\\ q & \text { if } \mu+\xi-\eta p \leq q \leq \mu+\xi-\beta \bar{V}_{q}(0, d-1) \\ \max \{\tilde{a}, 0\}(<q) & \text { if } q>\mu+\xi-\beta \bar{V}_{q}(0, d-1)\end{cases}
$$

Again, because $q \geq 0$, if $\mu+\xi-\beta \bar{V}_{q}(0, d-1)<0$ or $\mu+\xi-\eta p<0$, (A.9) reduces to one or two
segments only. Accordingly, the current-period value function can be written as

$$
V(q, d, \xi)= \begin{cases}\frac{1}{2}(\mu+\xi-\eta p)^{2}+\eta p q+\beta \bar{V}(0, d-1) & \text { if } 0 \leq q<\mu+\xi-\eta p \tag{A.10}\\ (\mu+\xi) q-\frac{1}{2} q^{2}+\beta \bar{V}(0, d-1) & \text { if } \mu+\xi-\eta p \leq q \leq \mu+\xi-\beta \bar{V}_{q}(0, d-1) \\ F(q ; \xi) & \text { if } q>\mu+\xi-\beta \bar{V}_{q}(0, d-1)\end{cases}
$$

where $F(q ; \xi)$ is defined by substituting the optimal usage $a^{*}=\max \{\tilde{a}, 0\}(<q)$ into (A.6), that is,

$$
\begin{equation*}
F(q ; \xi)=(\mu+\xi) a^{*}-\frac{1}{2} a^{* 2}+\beta \bar{V}\left(q-a^{*}, d-1\right) . \tag{A.11}
\end{equation*}
$$

It is easy to show that $V(q, d, \xi)$ is continuous in q by verifying the continuity of function value at the endpoints: for example, when $q=\mu+\xi-\beta \bar{V}_{q}(0, d-1), a^{*}=q$ so $F(q ; \xi)=(\mu+\xi) q-\frac{1}{2} q^{2}+$ $\beta \bar{V}(0, d-1)$. To show that $V(q, d, \xi)$ is increasing in q, we just need to show $F(q ; \xi)$ is increasing in q, because it is obviously true for the first two segments of (A.10). Taking derivative with respect to q on both sides of (A.11), by Envelope Theorem, we have

$$
\begin{equation*}
F_{q}(q ; \xi)=\beta \bar{V}_{q}\left(q-a^{*}, d-1\right) \geq 0 \tag{A.12}
\end{equation*}
$$

because $\bar{V}\left(q^{\prime}, d-1\right)$ is increasing in q^{\prime}. Therefore, $F(q ; \xi)$ is increasing in q; so is $V(q, d, \xi)$.
It is easy to show that $V(q, d, \xi)$ is differentiable in q, noticing that

$$
\begin{gather*}
\frac{\partial}{\partial q} V_{q \rightarrow\left(\mu+\xi-\beta \bar{V}_{q}(0, d-1)\right)^{-}}(q, d, \xi)=\beta \bar{V}_{q}(0, d-1) \tag{A.13}\\
\frac{\partial}{\partial q} V_{q \rightarrow\left(\mu+\xi-\beta \bar{V}_{q}(0, d-1)\right)^{+}}(q, d, \xi)=F_{q}(q ; \xi)=\beta \bar{V}_{q}(0, d-1), \tag{A.14}
\end{gather*}
$$

where (A.14) holds by (A.12) and the fact that $a^{*}=q$ when $q=\mu+\xi-\beta \bar{V}_{q}(0, d-1)$.
We next show that $V(q, d, \xi)$ is concave in q. It is obvious that $V(q, d, \xi)$ is concave when $0 \leq q<\mu+\xi-\eta p$ and strictly concave when $\mu+\xi-\eta p \leq q \leq \mu+\xi-\beta \bar{V}_{q}(0, d-1)$. Given that $V(q, d, \xi)$ is differentiable in q, therefore, we only need to show that $F(q ; \xi)$ is (strictly) concave in q for $q>\mu+\xi-\beta \bar{V}_{q}(0, d-1)$.

We prove by the definition of concavity. Consider any $q_{1}, q_{2} \geq \max \left\{\mu+\xi-\beta \bar{V}_{q}(0, d-1), 0\right\}$,
let $\hat{q}_{1}=q_{1}-a^{*}\left(q_{1}\right)$ and $\hat{q}_{2}=q_{2}-a^{*}\left(q_{2}\right)$. In other words, we use ${ }^{\wedge}$ to represent the remaining quota at the beginning of the next period as a result of the optimal amount of usage in the current period. Note that $0 \leq \hat{q}_{1} \leq q_{1}$ and $0 \leq \hat{q}_{2} \leq q_{2}$. Denote $\bar{q}=\lambda q_{1}+(1-\lambda) q_{2}$ and $\overline{\hat{q}}=\lambda \hat{q}_{1}+(1-\lambda) \hat{q}_{2}$ for $\forall \lambda \in(0,1)$. Clearly, $0 \leq \overline{\hat{q}} \leq \bar{q}$. In addition, define $U\left(q, q^{\prime}\right)=(\mu+\xi)\left(q-q^{\prime}\right)-\frac{1}{2}\left(q-q^{\prime}\right)^{2}$. It is easy to show that $U\left(q, q^{\prime}\right)$ is concave in $\left(q, q^{\prime}\right)$ because it is a quadratic function with a negative semidefinite Hessian matrix. Hence, $F(\bar{q} ; \xi)$ from (A.11) can be rewritten as

$$
\begin{align*}
F(\bar{q} ; \xi) & =U(\bar{q}, \hat{\bar{q}})+\beta \bar{V}(\hat{q}, d-1) \\
& \geq U(\bar{q}, \overline{\hat{q}})+\beta \bar{V}(\overline{\hat{q}}, d-1) \\
& \geq \lambda U\left(q_{1}, \hat{q}_{1}\right)+(1-\lambda) U\left(q_{2}, \hat{q}_{2}\right)+\beta \bar{V}(\overline{\hat{q}}, d-1) \tag{A.15}\\
& >\lambda U\left(q_{1}, \hat{q}_{1}\right)+(1-\lambda) U\left(q_{2}, \hat{q}_{2}\right)+\beta \lambda \bar{V}\left(\hat{q}_{1}, d-1\right)+\beta(1-\lambda) \bar{V}\left(\hat{q}_{2}, d-1\right) \\
& =\lambda F\left(q_{1} ; \xi\right)+(1-\lambda) F\left(q_{2} ; \xi\right)
\end{align*}
$$

The first inequality in (A.15) holds because of the optimality of $\hat{\bar{q}}$; the second inequality holds because of the concavity of $U\left(q, q^{\prime}\right)$ in $\left(q, q^{\prime}\right)$; the third (strict) inequality holds because of the strict concavity of $\bar{V}\left(q^{\prime}, d-1\right)$ in q^{\prime}. As a result, $F(q ; \xi)$ is strictly concave in q for any $q \geq$ $\max \left\{\mu+\xi-\beta \bar{V}_{q}(0, d-1), 0\right\}$. Therefore, $V(q, d, \xi)$ is concave in q for any $q \geq 0$ and strictly concave if $q \geq \mu+\xi-\eta p$.

Given we have shown that $V(q, d, \xi)$ is continuous, increasing, differentiable, and concave in q for any ξ, and it is strictly concave in q when $\xi<-\mu+q+\eta p$, following the same logic as the last part of the proof of Lemma A.1, we conclude that $\bar{V}(q, d)=E_{\xi} V(q, d, \xi)$ is continuous, increasing, differentiable, and strictly concave in q. Q.E.D.

Proof of Proposition 2. Recall the optimal usage $a^{*}(q, d, \xi)$ derived in (A.9) for any $d \geq 2$. In any day before the day when the data plan quota is fully expended, $a^{*}(q, d, \xi)=\max \{\tilde{a}, 0\}(<q)$. We want to show that \tilde{a}, the solution to (A.7), is strictly increasing in q.

Recall that $\tilde{a}(q)$ solves the first order condition

$$
\begin{equation*}
\mu+\xi-\tilde{a}(q)-\beta \bar{V}_{q}(q-\tilde{a}(q), d-1)=0 \tag{A.16}
\end{equation*}
$$

By Lemma A. 1 and Lemma A.2, the expected value function $\bar{V}(\cdot, \cdot)$ is increasing and strictly concave in the remaining quota for any period. Therefore, for any $q^{\prime}>q$,

$$
\begin{equation*}
\mu+\xi-\tilde{a}(q)-\beta \bar{V}_{q}\left(q^{\prime}-\tilde{a}(q), d-1\right)>0 \tag{A.17}
\end{equation*}
$$

because $\bar{V}_{q}\left(q^{\prime}-\tilde{a}(q), d-1\right)<\bar{V}_{q}(q-\tilde{a}(q), d-1)$ given the strict concavity of $\bar{V}(\cdot, d-1)$. As a result, $\tilde{a}\left(q^{\prime}\right)>\tilde{a}(q)$. Therefore, \tilde{a} is strictly increasing in q, which implies $a^{*}(q, d, \xi)=\max \{\tilde{a}, 0\}$ is strictly increasing in q if $0<a^{*}<q$. Q.E.D.

