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A Proofs of Propositions in Section 5.1

To simplify notations, without causing confusion, below we suppress subscripts 7 and ¢. Also notice
that throughout all the proofs below, wherever strict monotonicity or concavity applies, we explicitly
stress it; without explicit stress of strictness, we mean weak monotonicity /concavity.

Proof of Proposition 1. Myopic users determine their daily usage by maximizing the per-

period utility only, which is defined in (1). The optimal daily usage a* can thus be derived as

p+E—np(>q) fo<g<p+&—np

@7 ifpu+&—mp<qg<p+g (A1)

max {p +§,0} (< q) ifg>p+¢

In any day before the day when the data plan quota is fully expended, a* = max {u + £,0} (< ¢),
which is obviously independent of q. Q.E.D.
In order to prove Proposition 2, we first prove two key lemmas with regard to the properties of

the expected value function V (¢, d) as defined in (5).

Lemma A.1. For the last period, the expected value function V (q,d = 1) is continuous, increasing,

differentiable, and strictly concave in the remaining data plan quota q.

Proof. Recall that in the last period,

V(g,d=1,6) = max | (u+ &) a — sa> ~ npmax{a— 4,0} (A.2)



We can thus explicitly solve the value function as

Tu+e—mp)?+npg fO<qg<p+&—np
Vg d=1.8 =4 (u+&)q— 3¢ ifp+E—mp<q<p+é (A.3)

t(max{p+&0})*  ifg>p+¢,

where ¢ > 0. It is easy to show that V (¢,d = 1,&) is continuous, increasing, differentiable, and
concave in ¢ given any £. The continuity can be easily verified by checking the function value at each
endpoint. (Notice that because ¢ > 0, if u+& —np < p+ & < 0, only the third segment applies and
(A.3) reduces to a constant so that V (¢,d =1,§) =0for V¢ > 0; if u+&—np <0 < p+¢&, (A.3) re-
duces to two segments.) The monotonicity is immediate because the piecewise function is continuous
and piecewise increasing in q. V (¢,d = 1,€) is differentiable because the left and right derivatives
are equal at each endpoint: ’d%vq%(u-ﬂ-é—np)* (¢g,d=1,¢) = dq q—>(u+£ )~ (¢g,d =1,§) = np, and
fiaquzﬁ(wr{) (g,d=1,¢§) = 8qVq%(u+§) (g,d=1,§) =0. V(q,d=1,§) is concave in ¢ because it
is differentiable and piecewise concave in q.

Given that V (q,d = 1,&) is continuous, increasing, and differentiable in ¢ for any &, it is im-
mediate that the expected value function V (¢,d) = E¢V (¢,d,€), as an integral over all £, is also
continuous, increasing, and differentiable in q.

To show that V (g, d) is strictly concave in ¢, note that because V (g,d = 1,&) is concave in ¢,

by the definition of concavity, for any ¢1,¢2 > 0 and X € (0, 1), we have

for any £. Because V (q,d = 1,§) is strictly concave in the second segment in (A.3), strict inequal-
ity holds in (A.4) when & € (—pu+q1,—p+q +1p) U (—p+ g2, —p + g2 + np). Recall that ¢ is
a random variable with a continuous support over the entire real field. Therefore, when taking

expectation over £ on both sides of (A.4), we have
Egv ((1 — )\) Q1+ Mg, d = 1,&) > (1 — )\) EgV (ql, d= 1,5) + /\Egv (QQ, d= 1,5) s (A5)

which shows V (¢,d = 1) is strictly concave in ¢. Q.E.D. O



Lemma A.2. If the expected value function for the next period, V <q/,d— 1), 1S continuous, in-
creasing, differentiable, and strictly concave in ¢ , then the expected value function for the current

period, V (q,d), is also continuous, increasing, differentiable, and strictly concave in q.

Proof. We first show that given any &, the value function V' (¢, d, ) is continuous, increasing, dif-
ferentiable, and concave in ¢ if V (q/,d — 1) is continuous, increasing, differentiable, and strictly

concave in ¢ . Substituting (1) and (3) into (4), we can rewrite the current-period value function as

V (q,d,€) = max [(u+£)a—;aQ—np[a—QVJrﬂV([q—a]+,d— 1], (A.6)

where [-] stands for max {-,0}. To simplify notation, we use V, (¢, d) to represent 8%‘_/ (q,d) for
the rest of this proof.

Let a be the solution to the first order condition (with respect to a) when a < ¢, that is,
pt€—a— BV (q—ad-1)=0 (A7)

Therefore, a < ¢ if and only if u+ & —q— BV, (0,d — 1) < 0. When a > g, the first order condition

yields

u+€&—a*—np=0. (A.8)

a* > ¢ if and only if p+ & — g —np > 0. Notice that 3V, (0,d — 1) < np given B < 1. Therefore, we
can summarize the optimal usage in the current period as

,

p+éE—np(>q) f0<qg<pu+&—mnp

a*(¢,d,8) =< q fp+é—mp<qg<p+&—pBV,(0,d-1) (A.9)

max {a,0} (< q) ifg>p+E&—BV,(0,d—1)

Again, because ¢ > 0, if u+ & — BVZI (0,d—1) < 0or u+&—mnp <0, (A.9) reduces to one or two



segments only. Accordingly, the current-period value function can be written as

L+ e—mp)? +apg+ BV (0,d—1) f0<qg<pu+&—np

VI(g,d,&) = (u+€&)q— 1>+ BV (0,d—1) if p+&—np<qg<p+&—pV(0,d-1)

F(g;€) if > p+&—pBVy(0,d—1),
(A.10)

where F'(q; &) is defined by substituting the optimal usage a* = max {a, 0} (< ¢) into (A.6), that is,
* 1 * / *
(g = (n+€)a" — 2 + BV (g—a".d—1). (A1)

It is easy to show that V (g, d,§) is continuous in ¢ by verifying the continuity of function value
at the endpoints: for example, when ¢ = pu+&— 8V, (0,d — 1), a* = gso F (¢;€) = (u+ &) g — %qQ—i—
BV (0,d —1). To show that V (q,d, &) is increasing in ¢, we just need to show F (q; &) is increasing
in ¢, because it is obviously true for the first two segments of (A.10). Taking derivative with respect

to g on both sides of (A.11), by Envelope Theorem, we have
Fy(q:6) = BVq (g —a*,d—1) >0, (A.12)

because V (ql, d— 1) is increasing in ¢ . Therefore, F (¢;€) is increasing in ¢; so is V (¢, d, £).
It is easy to show that V (g, d,¢) is differentiable in ¢, noticing that

0

aiq%%(quéfﬁVq(o,dfl))_ (g,d,€) = pVq (0,d — 1) (A13)

d _
a*q‘/ﬁ(u+g_qu(0,d_1))+ (¢,d,&) = Fy(q;€) = BVq (0,d - 1), (A.14)

where (A.14) holds by (A.12) and the fact that a* = ¢ when ¢ = pu + & — 8V, (0,d — 1).

We next show that V (q,d, &) is concave in ¢. It is obvious that V (¢,d, ) is concave when
0 < q<p+&—np and strictly concave when p+ & —np < ¢ < pu+&— BV, (0,d—1). Given that
V (q,d, &) is differentiable in ¢, therefore, we only need to show that F'(q;§) is (strictly) concave in
qfor g > p+&—pBV,(0,d—1).

We prove by the definition of concavity. Consider any qi, g2 > max {,u +&— BV, (0,d—1) ,0},



let g1 = q1 —a* (q1) and ¢a = g2 — a* (¢2). In other words, we use " to represent the remaining quota
at the beginning of the next period as a result of the optimal amount of usage in the current period.
Note that 0 < ¢; < q; and 0 < go < g2. Denote ¢ = Aq1 + (1 — \) g2 and § = AGy + (1 — \) G for
VA € (0,1). Clearly, 0 < ¢ < ¢. In addition, define U (q, q/> =(u+¢ (q - q'> —3 (q - q,)z. It is
easy to show that U (q, q/) is concave in (q, q/> because it is a quadratic function with a negative

semidefinite Hessian matrix. Hence, F (g;€) from (A.11) can be rewritten as

F(g¢) = U(3.q) +8V(3,d—1)

> U(g,q) + BV (¢,d—1)
> MU (qi,G1) + (1 =N U (g2,G2) + BV (§,d — 1) (A.15)
> AU (q1,q1) + (A=A U (g2,G2) + BAV (G, d = 1) + (1 = A) V (G2, d — 1)

AF (q1;6) + (1= A) F(g2;6)

The first inequality in (A.15) holds because of the optimality of ¢; the second inequality holds
because of the concavity of U <q, q/) in (q,q/); the third (strict) inequality holds because of the
strict concavity of V (q’,d— 1) in ¢. As a result, F(q;€) is strictly concave in ¢ for any ¢ >
max{,u—l—g— BV, (0,d—1) ,O}. Therefore, V (q,d, &) is concave in ¢ for any ¢ > 0 and strictly
concave if ¢ > u+ & — np.

Given we have shown that V (g, d, &) is continuous, increasing, differentiable, and concave in ¢
for any &, and it is strictly concave in ¢ when € < —pu 4 g + np, following the same logic as the last
part of the proof of Lemma A.1, we conclude that V (q,d) = E¢V (q,d,§) is continuous, increasing,

differentiable, and strictly concave in ¢. Q.E.D. O

Proof of Proposition 2. Recall the optimal usage a* (¢, d, §) derived in (A.9) for any d > 2. In
any day before the day when the data plan quota is fully expended, a* (¢, d, &) = max {a,0} (< q).
We want to show that a, the solution to (A.7), is strictly increasing in g.

Recall that a (q) solves the first order condition

p+é—alg)—BVy(g—a(g),d—1)=0 (A.16)



By Lemma A.1 and Lemma A.2, the expected value function V (-, -) is increasing and strictly concave

in the remaining quota for any period. Therefore, for any q >q,
p+é—alq) — BV (d —alq),d—1)>0 (A.17)

because V; (¢ —a(q),d —1) < V,(¢—a(q),d—1) given the strict concavity of V (-,d —1). As a
result, a (q/> > a(q). Therefore, a is strictly increasing in ¢, which implies a* (¢, d, &) = max{a,0}

is strictly increasing in ¢ if 0 < a* < ¢q. Q.E.D.



